MPC

MPC 2011, ISSUE 4



Mathematical Programming Computation, Volume 3, Issue 4, December 2011

Practical strategies for generating rank-1 split cuts in mixed-integer linear programming

Gerard Cornuéjols, Giacomo Nannicini

In this paper we propose practical strategies for generating split cuts, by considering integer linear combinations of the rows of the optimal simplex tableau, and deriving the corresponding Gomory mixed-integer cuts; potentially, we can generate a huge number of cuts. A key idea is to select subsets of variables, and cut deeply in the space of these variables. We show that variables with small reduced cost are good candidates for this purpose, yielding cuts that close a larger integrality gap. An extensive computational evaluation of these cuts points to the following two conclusions. The first is that our rank-1 cuts improve significantly on existing split cut generators (Gomory cuts from single tableau rows, MIR, Reduce-and-Split, Liftand-Project, Flow and Knapsack cover): onMIPLIB instances, these generators close 24% of the integrality gap on average; adding our cuts yields an additional 5%. The second conclusion is that, when incorporated in a Branch-and-Cut framework, these new cuts can improve computing time on difficult instances.

Full Text: PDF



Mathematical Programming Computation, Volume 3, Issue 4, December 2011

A factorization with update procedures for a KKT matrix arising in direct optimal control

Christian Kirches, Hans Georg Bock, Johannes P. Schlöder, Sebastian Sager

Quadratic programs obtained for optimal control problems of dynamic or discrete-time processes usually involve highly block structured Hessian and constraints matrices, to be exploited by efficient numerical methods. In interior point methods, this is elegantly achieved by the widespread availability of advanced sparse symmetric indefinite factorization codes. For active set methods, however, conventional dense matrix techniques suffer from the need to update base matrices in every active set iteration, thereby loosing the sparsity structure after a few updates. This contribution presents a new factorization of a KKT matrix arising in active set methods for optimal control. It fully respects the block structure without any fill-in. For this factorization, matrix updates are derived for all cases of active set changes. This allows for the design of a highly efficient block structured active set method for optimal control and model predictive control problems with long horizons or many control parameters.

Full Text: PDF



Mathematical Programming Computation, Volume 3, Issue 4, December 2011

A recipe for finding good solutions to MINLPs

Leo Liberti, Nenad Mladenovic, Giacomo Nannicini

Finding good (or even just feasible) solutions forMixed-Integer Nonlinear Programming problems independently of the specific problem structure is a very hard but practically important task, especially when the objective and/or the constraints are nonconvex. With this goal in mind, we present a general-purpose heuristic based on Variable Neighborhood Search, Local Branching, a local Nonlinear Programming algorithm and Branch-and-Bound.We test the proposed approach on MINLPLib, comparing with several existing heuristic and exact methods. An implementation of the proposed heuristic is freely available and can employ all NLP/MINLP solvers with an AMPL interface as the main search tools.

Full Text: PDF




Imprint and privacy statement

For the imprint and privacy statement we refer to the Imprint of ZIB.
© 2008-2020 by Zuse Institute Berlin (ZIB).