MPC

MPC 2012, ISSUE 2



Mathematical Programming Computation, Volume 4, Issue 2, June 2012

PySP: modeling and solving stochastic programs in Python

Jean-Paul Watson, David L. Woodruff, William E. Hart

Although stochastic programming is a powerful tool for modeling deci- sion-making under uncertainty, various impediments have historically prevented its wide-spread use. One factor involves the ability of non-specialists to easily express stochastic programming problems as extensions of their deterministic counterparts, which are typically formulated first. A second factor relates to the difficulty of solving stochastic programming models, particularly in the mixed-integer, non-linear, and/or multi-stage cases. Intricate, configurable, and parallel decomposition strategies are frequently required to achieve tractable run-times on large-scale problems. We simul- taneously address both of these factors in our PySP software package, which is part of the Coopr open-source Python repository for optimization; the latter is distributed as part of IBM’s COIN-OR repository. To formulate a stochastic program in PySP, the user specifies both the deterministic base model (supporting linear, non-linear, and mixed-integer components) and the scenario tree model (defining the problem stages and the nature of uncertain parameters) in the Pyomo open-source algebraic model- ing language. Given these two models, PySP provides two paths for solution of the corresponding stochastic program. The first alternative involves passing an extensive form to a standard deterministic solver. For more complex stochastic programs, we provide an implementation of Rockafellar and Wets’ Progressive Hedging algorithm. Our particular focus is on the use of Progressive Hedging as an effective heuristic for obtaining approximate solutions to multi-stage stochastic programs. By leveraging the combination of a high-level programming language (Python) and the embedding of the base deterministic model in that language (Pyomo), we are able to provide com- pletely generic and highly configurable solver implementations. PySP has been used by a number of research groups, including our own, to rapidly prototype and solve difficult stochastic programming problems.

Full Text: PDF



Mathematical Programming Computation, Volume 4, Issue 2, June 2012

On optimizing over lift-and-project closures

Pierre Bonami

The strengthened lift-and-project closure of a mixed integer linear pro- gram is the polyhedron obtained by intersecting all strengthened lift-and-project cuts obtained from its initial formulation, or equivalently all mixed integer Gomory cuts read from all tableaux corresponding to feasible and infeasible bases of the LP relax- ation. In this paper, we present an algorithm for approximately optimizing over the strengthened lift-and-project closure. The originality of our method is that it relies on a cut generation linear programming problem which is obtained from the original LP relaxation by only modifying the bounds on the variables and constraints. This separation LP can also be seen as dual to the cut generation LP used in disjunc- tive programming procedures with a particular normalization. We study properties of this separation LP, and discuss how to use it to approximately optimize over the strengthened lift-and-project closure. Finally, we present computational experiments and comparisons with recent related works.

Full Text: PDF



Mathematical Programming Computation, Volume 4, Issue 2, June 2012

A penalty-interior-point algorithm for nonlinear constrained optimization

Frank E. Curtis

Penalty and interior-point methods for nonlinear optimization problems have enjoyed great successes for decades. Penalty methods have proved to be effective for a variety of problem classes due to their regularization effects on the constraints. They have also been shown to allow for rapid infeasibility detection. Interior-point methods have become the workhorse in large-scale optimization due to their New- ton-like qualities, both in terms of their scalability and convergence behavior. Each of these two strategies, however, have certain disadvantages that make their use either impractical or inefficient for certain classes of problems. The goal of this paper is to present a penalty-interior-point method that possesses the advantages of penalty and interior-point techniques, but does not suffer from their disadvantages. Numerous attempts have been made along these lines in recent years, each with varying degrees of success. The novel feature of the algorithm in this paper is that our focus is not only on the formulation of the penalty-interior-point subproblem itself, but on the design of updates for the penalty and interior-point parameters. The updates we propose are designed so that rapid convergence to a solution of the nonlinear optimization problem or an infeasible stationary point is attained. We motivate the convergence properties of our algorithm and illustrate its practical performance on large sets of problems, including sets of problems that exhibit degeneracy or are infeasible.

Full Text: PDF




Imprint and privacy statement

For the imprint and privacy statement we refer to the Imprint of ZIB.
© 2008-2020 by Zuse Institute Berlin (ZIB).