MPC

MPC 2016, ISSUE 3



Mathematical Programming Computation, Volume 8, Issue 3, September 2016

Revisiting compressed sensing: exploiting the efficiency of simplex and sparsification methods

Robert Vanderbei, Kevin Lin, Han Liu, Lie Wang

We propose two approaches to solve large-scale compressed sensing problems. The first approach uses the parametric simplex method to recover very sparse signals by taking a small number of simplex pivots, while the second approach reformulates the problem using Kronecker products to achieve faster computation via a sparser problem formulation. In particular, we focus on the computational aspects of these methods in compressed sensing. For the first approach, if the true signal is very sparse and we initialize our solution to be the zero vector, then a customized parametric simplex method usually takes a small number of iterations to converge. Our numerical studies show that this approach is 10 times faster than state-of-the-art methods for recovering very sparse signals. The second approach can be used when the sensing matrix is the Kronecker product of two smaller matrices. We show that the best-known sufficient condition for the Kronecker compressed sensing (KCS) strategy to obtain a perfect recovery is more restrictive than the corresponding condition if using the first approach. However, KCS can be formulated as a linear program with a very sparse constraint matrix, whereas the first approach involves a completely dense constraint matrix. Hence, algorithms that benefit from sparse problem representation, such as interior point methods (IPMs), are expected to have computational advantages for the KCS problem. We numerically demonstrate that KCS combined with IPMs is up to 10 times faster than vanilla IPMs and state-of-the-art methods such as ?1_?s and Mirror Prox regardless of the sparsity level or problem size.

Full Text: PDF



Mathematical Programming Computation, Volume 8, Issue 3, September 2016

A nonmonotone GRASP

M. De Santis, P. Festa, G. Liuzzi, S. Lucidi, F. Rinaldi

A greedy randomized adaptive search procedure (GRASP) is an iterative multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications of the construction procedure yields different starting solutions for the local search and the best overall solution is kept as the result. The GRASP local search applies iterative improvement until a locally optimal solution is found. During this phase, starting from the current solution an improving neighbor solution is accepted and considered as the new current solution. In this paper, we propose a variant of the GRASP framework that uses a new “nonmonotone” strategy to explore the neighborhood of the current solution. We formally state the convergence of the nonmonotone local search to a locally optimal solution and illustrate the effectiveness of the resulting Nonmonotone GRASP on three classical hard combinatorial optimization problems: the maximum cut problem (MAX-CUT), the weighted maximum satisfiability problem (MAX-SAT), and the quadratic assignment problem (QAP).

Full Text: PDF



Mathematical Programming Computation, Volume 8, Issue 3, September 2016

Phase retrieval for imaging problems

Fajwel Fogel, Irène Waldspurger, Alexandre d’Aspremont

We study convex relaxation algorithms for phase retrieval on imaging problems. We show that exploiting structural assumptions on the signal and the observations, such as sparsity, smoothness or positivity, can significantly speed-up convergence and improve recovery performance. We detail numerical results in molecular imaging experiments simulated using data from the Protein Data Bank.

Full Text: PDF



Mathematical Programming Computation, Volume 8, Issue 3, September 2016

RLT-POS: Reformulation-Linearization Technique-based optimization software for solving polynomial programming problems

Evrim Dalkiran, Hanif D. Sherali

In this paper, we introduce a Reformulation-Linearization Technique-based open-source optimization software for solving polynomial programming problems (RLT-POS). We present algorithms and mechanisms that form the backbone of RLT-POS, including constraint filtering techniques, reduced RLT representations, and semidefinite cuts. When implemented individually, each model enhancement has been shown in previous papers to significantly improve the performance of the standard RLT procedure. However, the coordination between different model enhancement techniques becomes critical for an improved overall performance since special structures in the original formulation that work in favor of a particular technique might be lost after implementing some other model enhancement. More specifically, we discuss the coordination between (1) constraint elimination via filtering techniques and reduced RLT representations, and (2) semidefinite cuts for sparse problems. We present computational results using instances from the literature as well as randomly generated problems to demonstrate the improvement over a standard RLT implementation and to compare the performances of the software packages BARON, COUENNE, and SparsePOP with RLT-POS.

Full Text: PDF




Imprint and privacy statement

For the imprint and privacy statement we refer to the Imprint of ZIB.
© 2008-2020 by Zuse Institute Berlin (ZIB).