MPC

Mathematical Programming Computation, Volume 8, Issue 3, September 2016

Revisiting compressed sensing: exploiting the efficiency of simplex and sparsification methods

Robert Vanderbei, Kevin Lin, Han Liu, Lie Wang

We propose two approaches to solve large-scale compressed sensing problems. The first approach uses the parametric simplex method to recover very sparse signals by taking a small number of simplex pivots, while the second approach reformulates the problem using Kronecker products to achieve faster computation via a sparser problem formulation. In particular, we focus on the computational aspects of these methods in compressed sensing. For the first approach, if the true signal is very sparse and we initialize our solution to be the zero vector, then a customized parametric simplex method usually takes a small number of iterations to converge. Our numerical studies show that this approach is 10 times faster than state-of-the-art methods for recovering very sparse signals. The second approach can be used when the sensing matrix is the Kronecker product of two smaller matrices. We show that the best-known sufficient condition for the Kronecker compressed sensing (KCS) strategy to obtain a perfect recovery is more restrictive than the corresponding condition if using the first approach. However, KCS can be formulated as a linear program with a very sparse constraint matrix, whereas the first approach involves a completely dense constraint matrix. Hence, algorithms that benefit from sparse problem representation, such as interior point methods (IPMs), are expected to have computational advantages for the KCS problem. We numerically demonstrate that KCS combined with IPMs is up to 10 times faster than vanilla IPMs and state-of-the-art methods such as ?1_?s and Mirror Prox regardless of the sparsity level or problem size.

Full Text: PDF




Imprint and privacy statement

For the imprint and privacy statement we refer to the Imprint of ZIB.
© 2008-2024 by Zuse Institute Berlin (ZIB).