Mathematical Programming Computation, Volume 12, Issue 1, March 2020

Exploiting sparsity for the min k-partition problem

Guanglei Wang, Hassan Hijazi

The minimum k-partition problem is a challenging combinatorial problem with a diverse set of applications ranging from telecommunications to sports scheduling. It generalizes the max-cut problem and has been extensively studied since the late sixties. Strong integer formulations proposed in the literature suffer from a large number of constraints and variables. In this work, we introduce two more compact integer linear and semidefinite reformulations that exploit the sparsity of the underlying graph and develop theoretical results leveraging the power of chordal decomposition. Numerical experiments show that the new formulations improve upon state-of-the-art.

Full Text: PDF

Imprint and privacy statement

For the imprint and privacy statement we refer to the Imprint of ZIB.
© 2008-2022 by Zuse Institute Berlin (ZIB).