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Abstract Finding a feasible solution of a given mixed-integer programming (MIP)
model is a very important NP-complete problem that can be extremely hard in prac-
tice. Feasibility Pump (FP) is a heuristic scheme for finding a feasible solution to
general MIPs that can be viewed as a clever way to round a sequence of fractional
solutions of the LP relaxation, until a feasible one is eventually found. In this paper we
study the effect of replacing the original rounding function (which is fast and simple,
but somehow blind) with more clever rounding heuristics. In particular, we investigate
the use of a diving-like procedure based on rounding and constraint propagation—a
basic tool in Constraint Programming. Extensive computational results on binary and
general integer MIPs from the literature show that the new approach produces a sub-
stantial improvement of the FP success rate, without slowing-down the method and
with a significantly better quality of the feasible solutions found.

Keywords Mixed-integer programming · Primal heuristics · Constraint
programming · Constraint propagation
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1 Introduction

Finding a feasible solution of a given mixed-integer programming (MIP) model
is a very important NP-complete problem that can be extremely hard in practice.
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(a) (b)

Fig. 1 Two very different FP behaviors (integrality distance vs. iterations)

Heuristics for general-purpose MIPs include [4–6,9,10,12,13,15–17,19,20,22,25,
26], among others.

A heuristic scheme for finding a feasible solution to general MIPs, called Feasibil-
ity Pump (FP), was recently proposed by Fischetti, Glover, and Lodi [11] and further
improved by Fischetti, Bertacco and Lodi [8] and Achterberg and Berthold [2]. The
FP heuristic turns out to be quite successful in finding feasible solutions even for hard
MIP instances, and is currently implemented in several optimization solvers, both
commercial and open-source.

FP works with a pair of points x∗ and x̃ , with x∗ feasible for the LP relaxation and
x̃ integer, that are iteratively updated with the aim of reducing their distance as much
as possible. To be more specific, one starts with any LP-feasible x∗, and initializes a
(typically LP-infeasible) integer x̃ as the rounding of x∗. At each FP iteration, x̃ is
fixed and one finds, through linear programming, the LP-feasible point x∗ which is
as close as possible to x̃ . If the distance between x∗ and x̃ is zero, then x∗ is a MIP
feasible solution, and the heuristic stops. Otherwise, x̃ is replaced by the rounding of
x∗ so as to further reduce their distance, and the process is iterated.

A main drawback of the basic FP scheme is its tendency to stall, in which case a
random perturbation (or even a restart) step is performed in the attempt of escaping the
local optimum. Figure 1 shows the different behavior of FP on two sample instances:
while in Fig. 1a the distance between x∗ and x̃ is rapidly brought to zero without the
need of any perturbation/restart, in Fig. 1b FP exhibits a much less satisfactory behav-
ior, with frequent restarts and perturbations that yield large oscillations of the distance
function and hence reduce the probability of success of the method.

In the attempt of improving the FP success rate, we observe that FP can be inter-
preted as a clever way of rounding a sequence of fractional solutions of the LP relax-
ation, until a feasible one is eventually found. It is therefore quite natural to try to
replace the original rounding operation (which is fast and simple, but somehow blind)
with a more clever rounding heuristic.

In this paper we investigate the use of a diving-like procedure based on rounding
and constraint propagation. The latter is a basic tool from Constraint Programming,
which is used in modern Branch&Cut (B&C) codes for node preprocessing.
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Feasibility pump 2.0 203

Extensive computational results on a large testbed of both binary and general
integer MIPs from the literature show that this is a promising direction for improving
significantly both the FP success rate and the quality of the feasible solutions found.

The paper is organized as follows. In Sect. 2 we provide a brief review of the basic
FP scheme, while in Sect. 3 we present some Constraint Programming concepts and
techniques useful to devise a “smarter” rounding strategy. In Sect. 4 we present our
new proposal of propagation-based rounding and we discuss its properties. Some cru-
cial implementation issues are explained in Sect. 5. Computational results are given
in Sect. 6, with a detailed performance comparison of the new method with both the
FP schemes of Fischetti, Bertacco and Lodi [8] and Achterberg and Berthold [2].
Conclusions are finally drawn in Sect. 7.

2 The feasibility pump

Suppose we are given a MIP:

min{cT x : Ax ≤ b, x j integer ∀ j ∈ I }

where A is an m × n matrix and I ⊆ {1, 2, . . . , n} is the index set of the variables
constrained to be integer. Let P = {x : Ax ≤ b} be the corresponding LP relaxation
polyhedron. We assume that system Ax ≤ b includes finite lower and upper bound
constraints of the form

l j ≤ x j ≤ u j ∀ j ∈ I

With a little abuse of terminology, we say that a point x is “integer” if x j is integer
for all j ∈ I (thus ignoring the continuous components). Moreover, we call a point
x ∈ P LP-feasible. Finally, we define the distance between two given points x and x̃ ,
with x̃ integer, as

�(x, x̃) =
∑

j∈I

|x j − x̃ |

again ignoring the contribution of the continuous components.
Starting from an LP-feasible point, the basic FP scheme generates two (hopefully

converging) trajectories of points x∗ and x̃ , which satisfy feasibility in a complemen-
tary way: points x∗ are LP-feasible, but may not be integer, whereas points x̃ are
integer, but may not be LP-feasible.

The two sequences of points are obtained as follows: at each iteration (called pump-
ing cycle), a new integer point x̃ is obtained from the fractional x∗ by simply rounding
its integer-constrained components to the nearest integer, while a new fractional point
x∗ is obtained as a point of the LP relaxation that minimizes �(x, x̃). The procedure
stops if the new x∗ is integer or if we have reached a termination condition—usually,
a time or iteration limit. Some care must be taken to avoid cycling, usually through
random perturbations. An outline of this basic scheme is given in Fig. 2.
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Fig. 2 Feasibility Pump—the basic scheme

According to this scheme, there are three essential FP ingredients:

Round This is the function called to transform an LP-feasible point into an
integer one. The standard choice is to simply round each component x∗

j
with j ∈ I to the nearest integer [x∗

j ] (say), while leaving the continuous
components unchanged.

LinearProj This function is somehow the inverse of the previous one, and is respon-
sible for calculating an LP-feasible point x∗ from the current integer x̃ .
A standard choice is to solve the following LP:

x∗ = arg min{�(x, x̃) : x ∈ P}

In the binary case the distance function �(·, x̃) can easily be linearized
as

�(x, x̃) =
∑

j∈I :x̃ j =1

(1 − x j ) +
∑

j∈I :x̃ j =0

x j

In the general integer case, however, the linearization requires the use
of additional variables and constraints to deal with integer-constrained
components x̃ j with l j < x̃ j < u j . To be more specific, the distance
function reads

�(x, x̃) =
∑

j∈I :x̃ j =u j

(u j − x j ) +
∑

j∈I :x̃ j =l j

(x j − l j ) +
∑

j∈I :l j <x̃ j <u j

d j

with the addition of constraints

d j ≥ x j − x̃ j and d j ≥ x̃ j − x j

Perturb This function is used to perturb an integer point when a cycle is detected.
The standard choice is to apply a weak perturbation if a cycle of length
one is detected, and a strong perturbation (akin to a restart) otherwise.
More details can be found in [8,11].
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2.1 The general integer case

The above scheme, although applicable “as is” to the general integer case, is not
particularly effective in that scenario. This is easily explained by observing that, for
general integer variables, one has to decide not only the rounding direction (up or
down), as for binary variables, but also the new value. For the same reasons, also the
random perturbation phases must be designed much more carefully.

To overcome some of these difficulties, an extended scheme suited for the general
integer case has been presented in Bertacco, Fischetti and Lodi [8]. The scheme is
essentially a three-staged approach. In Stage 1, the integrality constraint on the gen-
eral-integer variables is relaxed, and the pumping cycles are carried out only on the
binary variables. Stage 1 terminates as soon as a “binary feasible” solution is found,
or some termination criterion is reached. The rationale behind this approach is trying
to find quickly a solution which is feasible with respect to the binary components, in
the hope that the general integer ones will be “almost integer” as well. In Stage 2, the
integrality constraint on the general-integer variables is restored and the FP scheme
continues. If a feasible solution is not found in Stage 2, a local search phase (Stage 3)
around the rounding of a “best” x̃ is triggered as last resort, using a MIP solver as a
black box heuristic.

2.2 The objective feasibility pump

A drawback of the feasibility pump scheme presented in [8,11] is the often poor qual-
ity of the feasible solutions found. This is easily explained by the fact that the original
scheme uses the objective function of the problem only in the first iteration. This issue
has been addressed in several different ways in the literature.

Fischetti, Glover and Lodi [11] propose to add an objective cutoff of the form
cT x ≤ U B, where U B is dynamically updated whenever a new incumbent is found.
In particular U B consists in a convex combination of the values of the optimal LP
relaxation and of the current incumbent.

In Bertacco, Fischetti and Lodi [8], the use of improvement heuristics based on
local search, such as local branching [12] or RINS [9], is presented.

A different approach, called objective feasibility pump, is developed by Achterberg
and Berthold [2], who propose to use in the LinearProj phase a convex combi-
nation of the original objective with the distance function �(x, x̃). In particular, the
objective function of the LPs is given by

�α(x, x̃) = 1 − α

||�|| �(x, x̃) + α

||c||cT x

where || · || is the Euclidean norm and α ∈ [0, 1]. At each iteration i , coefficient αi is
geometrically decreased by a factor φ < 1, i.e., αi+1 = φαi . This modification calls
for an update of the cycle detection algorithm. Indeed, while in the original scheme
if we visit the same integer point x̃ twice we know for sure that we are in a cycle,
this is not the case in the modified scheme, because the objective function �α has
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changed in the meantime. Thus, at each iteration the pair (x̃i , αi ) is stored and a cycle
is detected if there exists two iteration i and j such that the corresponding pairs (x̃i , αi )

and (x̃ j , α j ) satisfy x̃i = x̃ j and |αi − α j | ≤ δα , for a given threshold δα .

3 Constraint propagation

Constraint propagation is a very general concept that appears under different names in
different fields of computer science and mathematical programming. It is essentially
a form of inference which consists in explicitly forbidding values—or combinations
of values—for some problem variables.

To get a practical constraint propagation system, two questions need to be answered:

• What does it mean to propagate a single constraint? In our particular case, this
means understanding how to propagate a general linear constraint with both inte-
ger and continuous variables. The logic behind this goes under the name of
bound strengthening [27,30] (a form of preprocessing) in the integer programming
community.

• How do we coordinate the propagation of the whole set of constraints defining our
problem?

In the remaining part of this section we will first describe bound strengthening
(Sect. 3.1) and then we will describe our constraint propagation system (Sect. 3.2),
following the propagator-based approach given by Schulte and Stuckey in [32].

3.1 Bound strengthening

Bound strengthening [1,18,21,27,30] is a preprocessing technique that, given the
original domain of a set of variables and a linear constraint on them, tries to infer
tighter bounds on the variables. We will now describe the logic behind this technique
in the case of a linear inequality of the form:

∑

j∈C+
a j x j +

∑

j∈C−
a j x j ≤ b

where C+ and C− denote the index set of the variables with positive and negative
coefficients, respectively. We will assume that all variables are bounded, with lower
and upper bounds denoted by l j and u j , respectively. Simple extensions can be made
to deal with unbounded (continuous) variables and equality constraints.

The first step to propagate the constraint above is to compute the minimum (Lmin)
and maximum (Lmax) “activity level” of the constraint:

Lmin =
∑

j∈C+
a j l j +

∑

j∈C−
a j u j

Lmax =
∑

j∈C+
a j u j +

∑

j∈C−
a j l j
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Now we can compute updated upper bounds for variables in C+ as

u j = l j + b − Lmin

a j
(1)

and updated lower bounds for variables in C− as

l j = u j + b − Lmin

a j
(2)

Moreover, for variables constrained to be integer we can also apply the floor �·�
and ceiling 	·
 operators to the new upper and lower bounds, respectively.

It is worth noting that no propagation is possible in case the maximum potential
activity change due to a single variable, computed as

max
j

{|a j (u j − l j )|}

is not greater than the quantity b − Lmin. This observation is very important for the
efficiency of the propagation algorithm, since it can save several useless propagator
calls. Finally, equations (1) and (2) greatly simplify in case of binary variables, and the
simplified versions should be used in the propagation code for the sake of efficiency.

3.2 Propagation algorithm

Constraint propagation systems [29,31,32] are built upon the basic concepts of
domain, constraint and propagator.

A domain D is the set of values a solution x can possibly take. In general, x is a
vector (x1, . . . , xn) and D is a Cartesian product D1 ×· · ·× Dn , where each Di is the
domain of variable xi . We will denote the set of variables as X .

A constraint c is a relation among a subset var(c) ⊆ X of variables, listing the
tuples allowed by the constraint itself. This definition is of little use from the computa-
tional point of view; in practice, constraint propagation systems implement constraints
through propagators.

A propagator p implementing1 a constraint c is a function that maps domains to
domains and that satisfies the following conditions:

• p is a decreasing function, i.e., p(D) ⊆ D for all domains. This guarantees that
propagators only remove values.

• p is a monotonic function, i.e., if D1 ⊆ D2, then p(D1) ⊆ p(D2).
• p is correct for c, i.e., it does not remove any tuple allowed by c.
• p is checking for c, i.e., all domains D corresponding to solutions of c are fixpoints

for p, i.e., p(D) = D. In other words, for every domain D in which all variables

1 In general, a constraint c is implemented by a collection of propagators; we will consider only the case
where a single propagator suffices.
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Fig. 3 Basic propagation engine

involved in the constraint are fixed and the corresponding tuple is valid for c, we
must have p(D) = D.

A propagation solver for a set of propagators R and some initial domain D finds a
fixpoint for propagators p ∈ R.

A basic propagation algorithm is outlined in Fig. 3. On input, the propagator set is
partitioned into the sets Pf and Pn , depending on the known fixpoint status of the prop-
agators for domain D—this feature is essential for implementing efficient incremental
propagation. The algorithm maintains a queue Q of pending propagators (initially Pn).
At each iteration, a propagator p is popped from the queue and executed. At the same
time the set K of variables whose domains have been modified is computed and all
propagators that share variables with K are added to Q (hence they are scheduled for
execution).

The complexity of the above algorithm is highly dependent on the domain of the
variables. For integer (finite domain) variables, the algorithm terminates in a finite
number of steps, although the complexity is exponential in the size of the domain
(it is however polynomial in the pure binary case, provided that the propagators are
also polynomial, which is usually the case). For continuous variables, this algorithm
may not converge in a finite number of steps, as shown in the following example
(Hooker [21]):

{
αx1 − x2 ≥ 0
−x1 + x2 ≥ 0

(3)

where 0 < α < 1 and the initial domain is [0, 1] for both variables: it can be easily
seen that the upper bound on x1 converges only asymptotically to zero.

4 The new FP scheme

As already observed, the rounding function described in the original feasibility pump
scheme has the advantage of being extremely fast and simple, but it has also the
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Fig. 4 New rounding procedure

drawback of completely ignoring the linear constraints of the model. While it is true
that the linear part is taken into account in the LinearProj phase, still the “blind” round-
ing operation can let the scheme fail (or take more iterations than necessary) to reach
a feasible solution, even on trivial instances.

Suppose, for example, we are given a simple binary knapsack problem. It is well
known that an LP optimal solution has only one fractional component, corresponding
to the so-called critical item. Unfortunately, a value greater than 0.5 for this component
will be rounded up to one, thus resulting in an infeasible integer solution (all other
components will retain their value, being already zero or one). A similar reasoning
can also be done for set covering instances, where finding a feasible solution is also a
trivial matter but can require several pumping cycles to an FP scheme.

Our proposal is to merge constraint propagation with the rounding phase, so as to
have a more clever strategy that better exploits information about the linear constraints.
This integration is based on the following observation: rounding a variable means tem-
porarily fixing it to a given value, so we can, in principle, propagate this temporary
fixing before rounding the remaining variables. This is very similar to what is done
in modern MIP solvers during diving phases, but without the overhead of solving the
linear relaxations. A sketch of the new rounding procedure is given in Fig. 4. The
procedure works as follows. At each iteration, a non-fixed variable x j ∈ I is selected
and rounded to [x∗

j ]. The new fixing x j = [x∗
j ] is then propagated by the propagation

engine. When there are no non-fixed variables left, the domain D j of every variable
x j with j ∈ I has been reduced to a singleton and we can “read” the corresponding x̃
from D.

With respect to the original “simple” rounding scheme, it is worth noting that:

• When rounding a general integer variable, one can exploit the reduced domain
derived by the current propagation. For example, if the domain of a variable y with
fractional value 6.3 is reduced to [8, 10], then it is not clever to round it to values
6 or 7 (as simple rounding would do), but value 8 should be chosen instead.

• On a single iteration, the new rounding scheme strictly dominates the original
one, because a feasible simple rounding cannot be ruled out because of constraint
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propagation. On the other hand, as outlined above, there are cases where the new
scheme (but not the original one) can find a feasible solution in just one iteration.

• There is no dominance relation between the two rounding schemes as far as the
“feasibility degree” of the resulting x̃ is concerned. This is because constraint
propagation can only try to enforce feasibility, but there is no guarantee that the
resulting rounded vector will be “more feasible” than the one we would have
obtained through simple rounding.

• There is also no dominance relation at the feasibility pump level, i.e., we are not
guaranteed to find a feasible solution in fewer iterations.

• As in diving, but differently from standard rounding, the final x̃ depends on the
order in which we choose the next variable to round (and also on the order in
which we execute propagators); this ordering can have an impact on the perfor-
mance of the overall scheme, as we will see in Sect. 6.2. In addition, a dynamic
ordering policy can be beneficial for reducing cycling, without resorting to random
pertubations.

Finally, while in a constraint propagation system it is essential to be able to detect
the infeasibility of the final solution as soon as possible (mainly to reduce propagation
overhead, but also to get smaller search trees or to infer smaller infeasibility proofs),
in the FP application we always need to bring propagation to the end, because we need
to choose a value for all integer variables. In our implementation, failed propagators
leading to infeasible solutions are simply ignored for the rest of the current rounding,
but the propagation continues in the attempt of reducing the degree of infeasibility of
the final solution found.

5 Implementation

While for binary MIPs the implementation of an FP scheme is quite straightforward,
in the general integer case some care must be taken to get a satisfactory behavior of
the algorithm. In addition, the overhead of constraint propagation can be quite large,
mainly if compared with the extremely fast simple rounding operation. Hence we need
a very efficient implementation of the whole constraint propagation system, includ-
ing both the single propagators and the overall propagation engine. In the rest of the
section we will describe important implementation details concerning these issues.

5.1 Optimizing FP restarts

Random perturbations, and in particular restarts, are a key ingredient of the original
FP scheme even for binary MIPs. They are even more important in the general integer
case, where the FP is more prone to cycling. As a matter of fact, our computational
experience shows that just adapting the original restart procedure for binary MIPs to
the general integer case results in a considerably worse overall behavior.

The FP implementation of Bertacco, Fischetti and Lodi [8] uses a quite elaborated
restart scheme to decide how much a single variable has to be perturbed, and how
many variables have to be changed. A careful analysis of the original source code
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[7] shows that a single variable x j is perturbed by taking into account the size of its
domain: if u j − l j < M with a suitable large coefficient M , then the new value is
picked randomly within the domain. Otherwise, the new value is picked uniformly in
a large neighborhood around the lower or upper bound (if the old value is sufficiently
close to one of them), or around the old value.

The number of variables to be perturbed, say RP, is also very important and has to be
defined in a conservative way. According to [7], RP is changed dynamically according
to the frequency of restarts. In particular, RP decreases geometrically with constant
0.85 at every iteration in which restarts are not performed, while it increases linearly
(with a factor of 40) on the others. Finally, RP is bounded by a small percentage (10%)
of the number of general integer variables, and the variables to be changed are picked
at random at every restart.

5.2 Optimizing propagators

The default linear propagator is, by design, general purpose: it must deal with all
possible combinations of variable bounds and variable types, and can make no assump-
tion on the coefficients (sign, distribution, etc.).

While it is true that constraints of this type are really used in practice, nevertheless
they are often only a small part of the MIP model. As a matter of fact, most linear
constraints used in MIP modeling have some specific structure that can be exploited
to provide a more efficient propagation [1].

For the reasons above, we implemented specialized propagators for several clas-
ses of constraints, and an automated analyzer for assigning each constraint to the
appropriate class. In particular, we implemented specialized propagators for

• Knapsack constraints, i.e., constraints with positive coefficients involving only
bounded variables. These assumptions allow several optimization to be performed.
Note that this class of constraints includes both covering and packing constraints.

• Cardinality constraints, i.e., constraints providing lower and/or upper bounds on
the sum of binary variables. Propagation can be greatly simplified in this case,
since we just need to count the number of variables fixed to zero or one. This class
includes classical set covering/packing/partioning constraints.

• Binary logic constraints, i.e., linear constraints expressing logical conditions
between two binary variables, such as implications and equivalences.

According to our computational experience, the above specializations can lead to
a speedup of up to one order of magnitude in the propagation phase.

5.3 Optimizing constraint propagation

A propagation engine should exploit all available knowledge to avoid unnecessary
propagator execution [32]. Moreover, when the engine invokes the execution of a
propagator, it should provide enough information to allow the most efficient algo-
rithms to be used. Thus the constraint system must support

• Propagator states, needed to store data structures for incremental propagation.
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• Modification information (which variables have been modified and how), needed
to implement sub-linear propagators and to implement more accurate fixpoint con-
siderations (see [29,31,32]).

A simple and efficient way for supporting these services is to use the so-called
advisors. Advisors were introduced by Lagerkvist and Schulte in [24] and are used in
the open-source constraint programming solver Gecode [14]. They are responsible for
updating the propagator state in response to domain changes, and to decide whether a
propagator needs to be executed. Each advisor is tied to a (variable, propagator) pair,
so that the most specialized behavior can be implemented. Modification information
is provided by propagation events, see [32]. More details about advised propagation
are available in [24].

Finally, since the presence of continuous variables or integer variables with huge
domains can make the complexity of propagation too high, we impose a small bound
on the number of times the domain of a single variable can be tightened (e.g., 10):
when this bound is reached, the domain at hand stops triggering propagator executions
within the scope of the current rounding.

6 Computational experiments

In this section we report computational results to compare the two rounding schemes
(with and without propagation). Our testbed consists of 78 instances from MIPLIB
2003 [3] and [9,28], which are the same instances used in [8]. One instance (stp3d)
was left out because even the first LP relaxation was very computationally demanding,
while instances momentum* were left out because of numerical problems.

All algorithms, including those of the propagation engine, were implemented in
C++. We used a commercial LP solver (ILOG Cplex 11.2 [23]) to solve the linear
relaxations and to preprocess our instances. All tests have been run on an Intel Core2
Q6600 system (2.40 GHz) with 4GB of RAM.

We denote by std the original FP based on simple rounding and with prop the
one using propagation-based rounding. Within prop, variables are ranked in order
of increasing fractionality, with binary variables always preceding the general integer
ones. This corresponds to the “smallest domain first” rule in Constraint Programming,
and it is also common wisdom in Integer Programming. As a matter of fact, binary
variables very often model the most important decisions in the model, and their fixing
usually triggers more powerful propagations. To reduce cycling, after the 10th iter-
ation we randomly swap 10% of the variables in the permutation giving the ranking
order.

We compared the two rounding schemes in two different scenarios:

alone To evaluate the effect of the new rounding scheme when the feasibility pump
is used as a standalone primal heuristic. The feasibility pump was run with
standard parameters, as described in [8], except for the time limit on Stage 3,
that was set equal to the overall computing time spent in Stages 1 and 2 so
as to avoid that Stage 3 dominates the entire run (for rococo* instances we
did not force the use of the primal simplex method for reoptimizing the LPs,
because it was much slower than using Cplex defaults).
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embed To evaluate the feasibility pump as a primal heuristic embedded in a general
purpose B&C code. In this scenario, it is not typically worthwhile to spend
a large computing time on a single heuristic, hence some parameter changes
are needed. In particular, in this setting we lower to 20 the iteration limit
and we skip the very expensive Stage 3 (that is also skipped in other FP
implementations, for example in SCIP [1]).

Moreover, since we want to test the ability of FP of finding good-quality solu-
tions, for each instance in our testbed we generated a set of instances with increasing
difficulty through the addition of an upper bound constraint of the type:

cT x ≤ U B := z∗(1 + β)

where z∗ is the best known solution from the literature, and β ∈ {0.1, 1.0,+∞} is the
relative allowed optimality gap.

The performance figures used to compare the algorithms are:

success The ratio between the number of solutions found and the number of trials.
The feasibility pump being a primal heuristic, this is the most important
figure for benchmarking.

iter Number of iterations needed to find a solution.
time Time needed to find a solution.
s3 The percentage of times in which FP reached Stage 3 (of course, this applies

only to the alone scenario). Stage 3 is usually quite expensive and is some-
what external to the FP scheme, so the lower the value of this figure the better.

As already discussed, random perturbations are a fundamental ingredient of the
FP scheme, so it is not completely fair to compare different variants on a single run.
Indeed, even if the random seed may not be crucial for the success of the FP on a
given instance, it may still greatly affect the number of iterations needed to find a
feasible solution. For these reasons, for each instance we ran 10 times each FP variant,
using different seeds for the internal pseudo-random number generator, and we used
average results for the comparison of the different algorithms. In particular, for each
instance we computed the arithmetic means for iter and time, while an algorithm
is considered successful if the number of solutions found is greater than 6 (out of 10).
A typical behavior is illustrated in Fig. 5, for instance air04, where the coordinates
of each point are the number of iterations needed to find a solution for std (x axis) and
prop (y axis), for different seeds. According to the figure, std required a number
of iterations ranging from 4 to 49, whereas for prop the range was 3 to 25. For this
instance, prop required fewer iterations than std in 8 out of 10 runs (points below
the line), while the opposite happened twice (points above the line).

Aggregated results are reported in Table 1. The structure of the table is as follows.
On the vertical axis, we have the performance figures (success, iter, time, and s3),
grouped by upper bound UB on the solution cost. On the horizontal axis we have
results for std and prop and the percentage improvement (impr%) achieved by
prop with respect to std (a positive percentage meaning that the new method based
on propagation outperformed the standard one), for the two scenarios alone and
embed. To assess the statistical significance of the performance difference for the
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Fig. 5 Effect of the random seed on the number of iterations needed to find a feasible solution on instance
air04, for both rounding schemes

Table 1 Aggregated testbed results

UB Figure Alone Embed

Std Prop Impr% L U Std Prop Impr% L U

None Success 87 90 3 −1 7 49 68 39 22 57

Iter 27 10 62 50 72 9 5 44 33 53

Time 1.05 0.82 21 7 34 0.39 0.39 0 −5 8

s3 18 14 21 −2 45 – – – – –

100% Success 85 88 5 0 10 32 55 72 43 101

Iter 87 24 72 60 81 12 7 43 32 52

Time 2.22 1.46 34 18 47 0.42 0.42 0 −7 6

s3 36 27 25 7 43 – – – – –

10% Success 50 59 18 3 32 17 21 23 −3 49

Iter 285 201 30 11 44 17 14 16 7 24

Time 5.80 7.75 −34 −68 −6 0.47 0.56 −19 −32 −7

s3 71 56 20 8 32 – – – – –

A positive impr% means that the new method (prop) outperformed the standard one (std). In columns
impr%, boldface entries passed a 95% significance test. Iter and time are given as geometric means

two rounding schemes, we also report the 95% confidence intervals for the entries
of columns impr% (columns L and U). In addition, the entries of Table 1 (columns
impr%) corresponding to a statistically significant change are highlighted in boldface.

According to Table 1, the typical performance of the new method (prop) is sig-
nificantly better than the previous one (std), in particular for the embed scenario
where the success rate improves by 39% when no upper bound is imposed, and by
72% and 23% for U B = 100% and 10%, respectively. Our statistical tests confirm
that this increase is statistically significant, with the exception of case U B = 10%
where the number of successful instances is too small.
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For the alone scenario the success rate improvement is less impressive (3, 5 and
18% in the three U B scenarios), due to the large number of iterations allowed and to
the presence of the time-consuming Stage 3, both of which tend to mask the improved
behavior of prop. However, even in the alone scenario, prop requires much fewer
iterations, which has a positive effect on the quality of the solutions found—this very
important aspect will be discussed in the next subsection. In addition, prop needs to
resort to Stage 3 less frequently.

As to computational efficiency, the two methods requires comparable computing
time: in the alone scenario, prop is 20–30% faster than std for U B ≥ 100%, and
about 30% slower for U B = 10%, whereas in the embed scenario the two meth-
ods are equivalent for U B ≥ 100% while prop is about 20% slower than std for
U B = 10% (which is acceptable, also in view of the improved success rate).

6.1 Impact of propagation on the solution quality

So far, we have evaluated the FP capability of finding good-quality solutions by adding
an artificial upper bound constraint. This procedure has the advantage of producing
solutions of “guaranteed” quality and it is also a quick method for generating difficult
test instances. However, this is not always a viable option, since we may not have a
reasonable upper bound to impose. In this situation, it is appropriate to just compare
the objective value of the solutions found by the two methods, with no upper bound
constraint added.

As already mentioned, the state-of-the-art FP scheme for producing good-quality
solutions is the objective FP of Achterberg and Berthold [2]. Thus, we compared the
effect of the new rounding scheme when implemented inside both versions of the FP
(original and objective), corresponding to setting parameter α of Sect. 2.2 to 0 and to
1, respectively.

Detailed results for all instances in our testbed are presented in Table 2. We com-
pared four FP variants, namely the Bertacco, Fischetti, Lodi [8] FP version (α = 0)
and the Achterberg, Berthold [2] objective FP (α = 1), both with (prop) and without
(std) propagation. For each instance and for each FP variant, we report the average
(out of 10 runs with different random seeds) of four figures: objective function value
(obj), percentage gap with respect to the best known solution (gap%), iterations
(iter), and computing time (time). Averages in columns obj and gap% refer to
the successful runs only (when different from 10, this number is reported, in paren-
thesis, in column obj). In boldface, we highlight the FP variant producing the best
(average) solution. Geometric means are reported in the last line of Table 2.

As anticipated, even in the non-objective FP version (α = 0) propagation proved
quite effective in improving the solution quality, the average gap being decreased
from 77.2 to 57.6%. This is mainly due to the greatly reduced number of iterations
and restarts, that has a positive effect in keeping the final solution closer the initial (LP
optimal) one.

As to the objective FP version (α = 1), the std version produces solutions with a
52.4% average gap, i.e., only 10% better than the original FP with prop. The average
gap is further improved to 35.5% when propagation is added. Out of 78 instances,
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Table 3 Success rate when
using different variable orders

Scenario UB Std Prop Frac Rev lr rnd

Alone None 87 90 90 88 90 91

100% 85 88 88 86 86 87

10% 50 59 55 53 51 56

Emb None 49 68 64 71 56 72

100% 32 55 53 50 44 54

10% 17 21 21 18 21 17

prop produced strictly better (average) solution than std in 50 cases, whereas the
opposite happened in 19 cases. These results confirm the effectiveness of exploiting
propagation within a FP scheme. As to computing times, the four variants are almost
the same, with prop giving a small speedup with respect to std.

6.2 Impact of different variable orders

As already mentioned in Sect. 4, the order in which we choose the next variable to
round can have, at least in principle, a large impact on the performance of the overall
propagation scheme. To assess the actual effect of different variable orders, we com-
pared the following four variants of our FP2.0 algorithm where all FP parameters but
the variable order are kept unchanged:

frac Variables are ranked in the same order used in prop, but without the random
swaps after the 10th iteration (i.e., in order of increasing fractionality, with
binary variables always preceding the general integer ones).

rev Variables are ranked in order of decreasing fractionality. This is exactly the
reverse of frac.

lr Variables are ranked from left to right, according to their index in the formulation
of the problem.

rnd The order is randomly chosen at each iteration.

The success rate of all the variants is reported in Table 3, for each scenario and
upper bound combination. For reference purposes, the success rates of std and prop
are also reported.

At first sight, the variable ordering seems not to have a great impact on the success
rate. Indeed, a standard Cochran Q-test followed by post hoc McNemar comparisons
confirms that the proportions are not statistically different, except for the lr order
which is significantly worse in the emb scenario for upper bounds None and 100%.
As far as the number of iterations and computing time needed to find a solution are
concerned, the differences are minimal, except again for lr with certain UB’s.

While similar from the success rate and computing time point of view, the dif-
ferent variants are however significantly different from the solution quality point of
view. The average gap closed in the settings of Sect. 6.1, namely scenario alone
and no upper bound, is reported in Table 4. According to the table, while prop and
frac reduce the average gap considerably, the performance of lr, rnd and rev is
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Table 4 Solution quality when
using different variable orders,
for both the original (α = 0) and
objective (α = 1) FP versions

Variant Gap% (α = 0) Gap% (α = 1)

Std 77.2 52.4

Prop 57.6 35.5

Frac 62.2 40.2

Rev 75.0 43.8

lr 76.1 50.6

rnd 73.8 45.2

considerably worse, about the same as std. Overall, among the proposed orders,
prop qualifies as the method of choice because it is at least as successful and fast as
the other variants, with a better solution quality of the solutions found.

7 Conclusions

In this paper a new version of the Feasibility Pump heuristic has been proposed and
evaluated computationally. The idea is to exploit a concept borrowed from Constraint
Programming (namely, constraint propagation) to have a more powerful rounding
operation. The computational results on both binary and general integer MIPs show
that the new method finds more feasible solutions than its predecessor, typically in a
shorter computing time. A main feature of the new method is the reduced number of
iterations to reach convergence, that implies a significantly improved solution quality
of the final outcome.
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