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Abstract Gomory mixed-integer (GMI) cuts are among the most effective cutting
planes for general mixed-integer programs (MIP). They are traditionally generated
from an optimal basis of a linear programming (LP) relaxation of a MIP. In this paper
we propose a heuristic to generate useful GMI cuts from additional bases of the initial
LP relaxation. The cuts we generate have rank one, i.e., they do not use previously
generated GMI cuts. We demonstrate that for problems in MIPLIB 3.0 and MIPLIB
2003, the cuts we generate form an important subclass of all rank-1 mixed-integer
rounding cuts. Further, we use our heuristic to generate globally valid rank-1 GMI
cuts at nodes of a branch-and-cut tree and use these cuts to solve a difficult problem
from MIPLIB 2003, namely timtab2, without using problem-specific cuts.

Mathematics Subject Classification (2000) 90C11 · 90C57

1 Introduction

Gomory mixed-integer (GMI) cutting planes (or cuts) [28], form one of the most impor-
tant classes of cutting planes for solving general mixed-integer programs (MIP). In
the 1970s, Geoffrion and Graves [27] combined GMI cuts with linear programming
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(LP) based branch-and-bound to solve a MIP arising in a practical application, but did
not systematically study the effect of GMI cuts on a range of MIPs. Balas et al. [6]
first showed how to use GMI cuts in a generally effective manner in the 1990s, and
the usefulness of GMI cuts in solving practical MIPs is confirmed in [11,13].

Following these papers, GMI cuts are typically generated from rows of an optimal
simplex tableau associated with an LP relaxation of a MIP, usually in a small number
of rounds. A round [6] of GMI cuts consists of generating GMI cuts from multiple
rows of an LP relaxation tableau and augmenting the relaxation with the cuts violated
by the basic solution defined by the tableau. The effectiveness of rounds of GMI cuts is
partially explained by the papers of Dash and Günluk [20], Fischetti and Saturni [25],
and Fukasawa and Goycoolea [26], who essentially show that no additional cuts from
the rows of an optimal simplex tableau are useful over and above GMI cuts from these
rows for MIPLIB 3.0 [12] problems. However, after many successive rounds of cuts
from optimal tableau rows, the GMI cuts are often very dense or have large variation
in coefficient magnitudes, thus leading to hard-to-solve LP relaxations when they are
added. Further, because of floating-point computations with limited accuracy, the com-
puted cuts are often invalid [32]. These factors inhibit extensive GMI cut generation.

GMI cuts (as described above) are equivalent to mixed integer rounding (MIR)
inequalities [31] generated from simplex tableau rows. We say that a valid inequality
or cutting plane has MIR rank 1 (abbreviated as rank 1) if it can be derived as a MIR
cut from some linear combination of the rows of a MIP (which has rank 0). A valid
inequality has rank k > 0 if it can be derived as a MIR cut from inequalities with rank
k − 1 or less, but cannot be derived from inequalities with rank k − 2 or less. GMI
cuts from a simplex tableau of the initial LP relaxation of a MIP have rank 1. Multiple
rounds of GMI cuts may lead to cuts with rank 2 or more.

Marchand and Wolsey [30] showed that MIR cuts (different from GMI cuts) are
useful in solving general MIPs. Fischetti and Lodi [24] obtained strong lower bounds
for the pure integer programs (with an objective function to be minimized) in MIP-
LIB 3.0 by optimizing over the Chvátal closure, i.e., by iteratively generating violated
rank-1 Gomory-Chvátal cuts. Balas and Saxena [8], and Dash et al. [22] later obtained
significantly stronger lower bounds for MIPLIB 3.0 instances by approximately opti-
mizing over the MIR closure (the set of points satisfying all rank-1 MIR cuts), via
iterative generation of violated rank-1 MIR cuts. However, for an arbitrary point, find-
ing a violated MIR cut is NP-hard [15]. In [8,24] and [22], an auxiliary MIP is solved
to find a linear combination of rows yielding a violated cut, and this process is very
time-consuming.

Our work is inspired by the fact that aggressive generation of rank-1 MIR cuts
allows one to close a large fraction of the integrality gap for MIPLIB 3.0 problems
[8,22], and by the fact that the first round of GMI cuts (which have rank 1) can be
obtained very quickly, has appealing numerical properties [6,20,25,26], and closes a
non-trivial fraction of the integrality gap closed by all rank-1 MIR cuts (about 26.09%
for the first round of GMI cuts, and 76.52% for rank-1 MIR cuts, see Table 4). We
study the following two questions in this paper. (A) Do rank-1 GMI cuts define a
good approximation to the set of rank-1 MIR cuts for practical MIPs? (B) Can one
design a fast algorithm to find violated rank-1 GMI cuts? It is shown in [19] that the
MIR closure is strictly contained in the rank-1 GMI cut closure for some MIP, though
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A heuristic to generate rank-1 GMI cuts 233

this does not answer Question A. As for the second question, we do not know if it
is NP-hard to separate over the family of rank-1 GMI cuts. Partial answers to these
questions are given in Bonami and Minoux [10] discussed below.

We give positive answers to these questions for MIPLIB 3.0 problems via a fast
heuristic to find rank-1 GMI cuts. Given a MIP with LP relaxation L := min{cx :
Ax = b, x ≥ 0} and a non-basic solution x∗ of L to be separated, our method explores
bases with properties similar to an optimal basis of L , namely (1) the basic columns
are contained in the support of the point to be separated (assuming non-degeneracy),
and (2) the nonbasic columns correspond to variables with values close to zero. For
every basis we find, we add all GMI cuts violated by x∗. If A is sparse and has m rows,
and x∗ is non-basic with m+ t nonzeros for small t , then (1) our method often finds a
basis of L such that some of the associated GMI cuts are violated by x∗; (2) the time
to find such a basis is comparable to the time for a round of GMI cuts derived from an
optimal basis of L; (3) such GMI cuts close a much larger fraction of the integrality
gap than the first round of GMI cuts. We iterate this process, and generate multiple
rounds of rank-1 GMI cuts.

Our method is much faster than the MIP-based separation methods of Balas and
Saxena, and of Dash et al., but is not much weaker for MIPLIB 3.0 instances in terms
of the integrality gap closed. For 54 out of the 65 instances in MIPLIB 3.0 our default
(resp., expensive) heuristic closes 62.16% (resp., 64.58%) of the integrality gap, on
average; the corresponding numbers for rank-1 MIR cuts in Dash et al. [22] and Balas
and Saxena [8] are 62.53 and 76.52%, respectively (Table 4). One round of GMI cuts
closes 26.09% of the integrality gap. Further, for the MIPs in MIPLIB 2003 [1] not
contained in MIPLIB 3.0, our default heuristic closes 39.68% of the integrality gap,
as opposed to 18.37% if one round of GMI cuts is used.

In related work, Balas and Perregard [7] showed, for 0–1 problems, that strength-
ened lift-and-project (L&P) cuts (defined in [5]) are the same as rank-1 GMI cuts. They
showed that an L&P cut from a basic feasible solution (say μ) of the cut generation LP
(CGLP) associated with L&P cuts is equivalent to an L&P cut for some tableau row
(say r ), and the strengthened L&P cut from μ is just the GMI cut from r . To separate
a basic solution x∗, they give a fast algorithm to find r , which starts with a row of the
simplex tableau defining x∗ and performs pivoting steps. Their implementation of this
algorithm and that of Balas and Bonami [4] yields good results for MIPLIB instances.
In contrast with our work, they use rank-1 GMI cuts from non-optimal tableaus to
strengthen GMI cuts from the optimal tableau, and not as a source of additional rank-
1 cuts. In particular, after one round of GMI cuts, they generate potentially higher
rank cuts. For other ways of generating GMI cuts, see Ceria et al. [16], and Andersen
et al. [2].

For 0–1 problems, Bonami and Minoux [10] find L&P cuts cutting off a point x∗,
and replace these cuts with strengthened L&P cuts. They thereby approximately opti-
mize over PL&P+S—the points satisfying all strengthened L&P cuts, which equals the
rank-1 GMI cut closure by the results of Balas and Perregaard above. Their results for
0–1 MIPLIB 3.0 instances (23 out of the 54 we study) are fairly good. On the average,
they close 52.36% of the integrality gap, as opposed to 19.91% gap closed with one
round of GMI cuts. Our default heuristic closes 65.27% of the integrality gap; their
computing times have the same order of magnitude as ours.
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The effect of multiple rounds of GMI cuts has been studied earlier (e.g., by Balas
et. al. [6], and in [18]); however the GMI cuts are not restricted to have rank 1. Our
method avoids some of the numerical problems associated with GMI cuts in these
papers, allowing us to generate many rounds of rank-1 GMI cuts. Further, our heuris-
tics yield globally valid rank-1 GMI cuts at the nodes of a branch-and-cut tree, even for
problems with general integer variables. In contrast, in Balas et. al. [6], the technique
to obtain a globally valid GMI cut at a node of a branch-and-cut tree by lifting applies
only to 0–1 mixed integer programs. We show that the cuts we generate significantly
reduce the size of the branch-and-cut tree for some MIPLIB problems. In particular,
we can solve timtab2 from MIPLIB 2003, a problem which was previously solved
only using problem-specific cuts (see [14,29]).

The paper is structured as follows. In Sect. 2 we discuss the standard way of gener-
ating GMI cuts described in the literature. In Sect. 3 we describe the main idea behind
our method of choosing suitable non-optimal bases to generate GMI cuts. In Sect. 4,
we discuss how to incorporate our cutting plane technique in a branch-and-cut set-
ting, and also how to use branch-and-bound to find suitable bases for generating GMI
cuts. We present our computational results in Sect. 5. Finally, we conclude in Sect. 6
with a discussion on the limitations of and possible improvements to our technique.
We also briefly describe how our techniques can be used in the context of nonlinear
programming problems.

2 The GMI cut

Consider a general MIP given in the form

M := min{cx : x ∈ R
n+, Ax = b, xi ∈ Z ∀i ∈ S}, (1)

where S ⊆ {1, . . . , n}. We assume A has m rows and has full row rank, i.e., the rank
of A is m, and therefore, m ≤ n. We assume all data is rational. For a number t ∈ R,
we define t̂ = t − �t	.

Assume that the equation

n∑

i=1

ai xi = β (2)

is implied by Ax = b. Further assume that β is not integral, i.e., β̂ = β − �β	 
= 0.
The Gomory mixed-integer (GMI) cutting plane or inequality for (2) is

∑

i∈S,âi <β̂

âi

β̂
xi +

∑

i∈S,âi≥β̂

1− âi

1− β̂
xi + 1

β̂

∑

i /∈S,ai >0

ai xi − 1

1− β̂

∑

i /∈S,ai <0

ai xi ≥ 1, (3)

and is satisfied by the solutions of M . We refer to the equation
∑n

i=1 ai xi = β as the
base constraint of (3). Note that every integer variable xi such that ai is integral gets
a coefficient of 0 in (3) because âi = 0.
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A heuristic to generate rank-1 GMI cuts 235

Let L1 be the linear program

L1 := min{cx : Ax = b, x ≥ 0}, (4)

the standard LP relaxation of (1). An m × m sub-matrix B of linearly independent
columns in A is referred to as a basis (or basis matrix by others) of A, or a basis of L1.
If B is a basis of A, then A can be written as (B, N ) where N is the set of remaining
columns. Let I = {1, . . . , n} and let IB ⊆ I be the set of indices of columns in B. Let
IN = I \ IB be the set of indices of all other columns. The variables x j with j ∈ IB

are called basic and all others non-basic with respect to B. We define xB (resp. xN )
to be the vector of variables such that the i th variable in xB (resp. xN ) corresponds to
the i th column in B (resp. N ).

Given a basis B of A, the system of equations Ax = b is equivalent to the system

xB + B−1 N xN = B−1b. (5)

This is the tableau associated with B. Each row of system (5) is known as a tableau
row. We say that a solution x∗ of Ax = b is basic with respect to B if x∗N = 0 and
x∗B = B−1b. We say that a basic solution x∗ is feasible if x∗B ≥ 0. If L1 has an optimal
solution, then it has an optimal solution which is basic for some basis B.

Tableaus and basic solutions are important in the context of GMI cuts. Observe that
the kth row of the tableau (5) is of the form

x j +
∑

i∈IN

āi xi = β̄ (6)

where x j is the kth basic variable, ā is the kth row of B−1 N , and β̄ = (B−1b)k . If
x∗ is a feasible solution of (4) which is basic with respect to B, then x∗i = 0 for all
i ∈ IN and x∗j = β̄. Thus, the GMI cut with base inequality (6) is violated by x∗ if
j ∈ S and x∗j is not integral. We say that the GMI cuts with base inequality (6) for
k = 1, . . . , m are based on B.

We refer to the step of adding the violated GMI cuts based on a basis B simulta-
neously as a round of GMI cuts, following Balas et. al. [6]. They showed that adding
GMI cuts in rounds is very effective for MIPLIB 3.0 [12] problems. In [6, Fig. 1],
the authors demonstrate that adding all violated GMI cuts based on an optimal basis
is more effective than adding a fraction of the violated cuts. From now on, we will
assume a round consists of all violated GMI cuts. Recent work in [20,25], and [26]
provides additional evidence of the value of adding GMI cuts in rounds for MIP-
LIB 3.0 problems. In [20] the authors show that an optimal solution of the relaxation
obtained by adding all GMI cuts based on an optimal basis B of L1 satisfies all group
cuts (interpolated group cuts in [25]) derived from individual tableau rows of L1 cor-
responding to B. In [26], Fukasawa and Goycoolea show that adding knapsack cuts
based on rows of the optimal tableau of L1 (i.e., cuts which use both upper and lower
bounds on the variables) does not yield improved bounds over that obtained by adding
all GMI cuts for most MIPLIB 3.0 problems.
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B

B

Fig. 1 The relationship between B̄ and B

In Algorithm 1 we formalize the notion of a round of GMI cuts given a basis B and
solution x∗ of an LP relaxation of M . In a departure from Balas et al. [6], we do not
require that x∗ be basic with respect to B, nor that B be an optimal basis of the LP
relaxation. If B is an optimal basis and x∗ is basic with respect to B then Step 5 can
be eliminated from Algorithm 1.

Algorithm 1: A round of GMI cuts
Input: A vector x∗ satisfying Ax∗ = b, a basis B of A, and a set of indices S ⊆ I identifying the

integer variables.
Output: A list of GMI cuts.
for each basic integer variable x j ( j ∈ S ∩ IB ) do1

Compute the associated tableau row x j +
∑

i∈IN
āi xi = β̄.2

if β̄ is not integral then3
Compute the corresponding GMI cut.4
if the GMI cut is violated by x∗ then5

Store the cut in a list to be returned to the user.6

Applying Algorithm 1 to an optimal basis B of L1 and the associated basic solution
x∗, and adding all the generated cuts to L1, we obtain a linear program of the form

L2 = min{cx : Ax = b, Cx ≥ d, x ≥ 0},

where C and d represent the GMI cuts. If L2 is written in equality form by adding
surplus variables, then the cut-generation process can be repeated using an optimal
basis and associated solution of L2, as described in Algorithm 2. Clearly all GMI cuts
obtained from L1 are rank-1 cuts, but the GMI cuts obtained from L2 may not have
rank 1.

In this paper we explore new ways of generating rank-1 GMI cuts. We diverge
from Algorithm 2 from i = 2 onwards. Instead of deriving GMI cuts from an optimal
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A heuristic to generate rank-1 GMI cuts 237

Algorithm 2: A traditional GMI cutting plane algorithm
Input: An MIP with constraints Ax = b, x ≥ 0 where integer variables have indices in S ⊆ I. A

number of iterations M AX_I T E R.
Output: A set of cuts and a solution x∗.
Ā← A, b̄← b, c̄← c, x̄ ← x .1
for i = 1, . . . , M AX_I T E R do2

Solve Li := min{c̄x̄ : Āx̄ = b̄, x̄ ≥ 0} and obtain an optimal basis B̄ and associated solution x̄∗.3
if x̄∗ is not integral then4

Use Algorithm 1 with input x̄∗, Ā, b̄, B̄ and S to obtain a list of GMI cuts.5
Eliminate slack variables in the GMI cuts to get cuts in the x variables alone.6

Update Ā, b̄, c̄ and x̄ to incorporate the new cuts and related slack variables.7

else8
Go to Step 10.9

Eliminate slack variables and return x̄∗ and cuts in original variables.10

tableau of Li for i ≥ 2, we instead attempt to find a basis B of L1 such that GMI cuts
based on B are violated by the solution of Li for i ≥ 2. This procedure is described
in Algorithm 3. Note that Step 7 of Algorithm 3 may not find violated cuts, whereas
Step 5 of Algorithm 2 will always find cuts.

Algorithm 3: Our proposed GMI cutting plane algorithm
Input: An MIP with constraints Ax = b, x ≥ 0 where integer variables have indices in S ⊆ I. A

number of iterations M AX_I T E R.
Output: A set of rank-1 GMI cuts and a solution x∗.
Ā← A, b̄← b, c̄← c, x̄ ← x .1
for i = 1, . . . , M AX_I T E R do2

Solve Li := min{c̄x̄ : Āx̄ = b̄, x̄ ≥ 0} and obtain an optimal basis B̄ and associated solution x̄∗.3
if x̄∗ is not integral then4

Use x̄∗ as a “guide” to derive a basis B of L1.5
Project out slack variables from x̄∗ to obtain x∗ in the original space.6
Use Algorithm 1 with input x∗, A, b, B and S to obtain a list of GMI cuts.7

Update Ā, b̄, c̄ and x̄ to incorporate the new cuts and slack variables.8

if x̄∗ is integral or Algorithm 1 failed to produce violated cuts then9
Go to Step 11.10

Eliminate slack variables and return x̄∗ and cuts in original variables.11

The key step in Algorithm 3 is Step 5, where a new basis B of L1 is chosen based
on a solution x̄∗ obtained from Li using a two step-procedure. In the first step, we
use x̄∗ to select a subset of columns in A within which to search for a basis B. It is
important that the selected subset of columns actually contains a basis of A. In the
second step, we construct a basis from this subset. In Sect. 3 we describe a simple
scheme to select a subset of columns in A, and focus on describing different ways
of constructing a basis B from this subset. In Sect. 4 we describe a different way of
performing the first step.
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3 Alternate bases

In this section we are concerned with Step 5 of Algorithm 3. That is, given an optimal
solution x∗ of the linear program

Li = min{cx : Ax = b, Cx ≥ d, x ≥ 0} (7)

for i ≥ 2, we would like to obtain a basis B, not necessarily feasible, of the linear
program,

L1 = min{cx : Ax = b, x ≥ 0},

such that Algorithm 1 with input x∗, A, b, B, and S and returns some cuts violated
by x∗. In the previous section, we described Li as arising from L1 via the addition of
GMI cuts; thus, in that context, the rows of Cx ≥ d defined constraints satisfied by all
integral solutions of L1. In what follows, we will not use this fact. In Sect. 4, we will
let Cx ≥ d stand for constraints which may not be satisfied by all integral solutions
of L1 (in particular, branching constraints).

It suffices to describe our procedure when i = 2 in (7). We first write L2 in standard
form. That is, if C has t rows, we add t surplus variables s = (s1, . . . , st ) and let

L̄2 = min{c̄x̄ : Āx̄ = b̄, x̄ ≥ 0}, where

Ā =
[

A 0
C −I

]
, x̄ =

(
x
s

)
, b̄ =

(
b
d

)
, c̄ = (c, 0).

As A has full row-rank, so does Ā.
Let x̄∗ = (x∗, s∗) be a basic feasible solution of L̄2, and let B̄ be the corresponding

basis. Recall that I = {1, . . . , n} is the index set of variables in L1. The basis B̄ con-
sists of both variables in L1, and surplus variables corresponding to the inequalities
in Cx ≥ d. Let IB̄ ⊆ I be the indices of the variables in L1 which are basic with
respect to B̄. In our simplest implementation of the first step described at the end of
the previous section, we search for a basis B of L1 within AB̄ , the columns in A with
indices in IB̄ .

Clearly B̄ has rank m + t and has the form

B̄ =
[

AB̄ 0
CB̄ −I ′

]
,

where I ′ has t rows and is a submatrix of the t × t identity matrix. Therefore AB̄
has rank exactly m. Thus, the columns of AB̄ contain a basis B of A. We depict the
relationships between the different bases above in Fig. 1. Any GMI cut based on B is
valid for L1, though such a cut need not be violated by x∗.
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P

x

c

x*

x’

Fig. 2 The relationship between x̂, x∗ and x ′

3.1 The feasible basis heuristic

Consider the solution x∗ defined above, the set IB̄ , and the associated sub-matrix
AB̄ of A. Let x ∗̄

B
and cB̄ denote the vectors obtained by taking the components of

x∗ and c contained in IB̄ , respectively. Clearly, x ∗̄
B

defines a feasible solution of
min{cB̄ y : AB̄ y = b, y ≥ 0}, and therefore a basic, optimal solution of the above LP
yields a basis B for L1 such that IB ⊆ IB̄ . We define a heuristic to perform Step 5 of
Algorithm 3 motivated by the above observation. Instead of deleting columns from A
to obtain the above LP, we instead let

P ′ = {cx : Ax = b, x ≥ 0, xi = 0 ∀i /∈ IB̄}

and simply solve the problem min{cx : x ∈ P ′} to obtain a basic optimal solution x ′
and corresponding basis B of L1. Though there always exists an optimal basis with
IB ⊆ IB̄ , a standard LP solver may in fact return a basis containing some of the vari-
ables which are fixed to zero, in the presence of degeneracy. Since this procedure is
guaranteed to obtain a feasible basis, we call this procedure the Feasible Basis heuris-
tic or feas. We also experimented with solving min{0x : x ∈ P ′} to obtain a different
feasible basis, but did not notice a significant difference in results.

In Fig. 2 we depict the optimal solution x̂ of L1 in the direction c, the point x∗
obtained after adding a GMI cut (and solving L2), and the point x ′ obtained by feas.
In this figure, the dotted line refers to the first GMI cut, and the dashed line to a GMI cut
obtained from B. Note that the point x∗ lies on a facet of the polyhedron P , depicted
by the thick line. Assume the surplus variable for the corresponding constraint is non-
basic in L2 (i.e., the corresponding column is not in B̄). In P ′, we fix this surplus
variable to 0; in other words, we only look for solutions to L1 which lie on the face
P ′. The point x ′ in the figure is a basic optimal solution of min{cx : x ∈ P ′}. In this
figure, x∗ is violated by the second GMI cut.

If x∗ is a basic solution of L1, or equivalently, |IB̄ | = m, then P ′ = {x∗}. This
suggests that if IB̄ is not much larger than m, then extreme points in P ′ are somehow
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x’
x

c

x*

P

Fig. 3 A GMI cut from an infeasible solution x ′

“similar” to x∗, and generating GMI cuts from such points might be a fruitful way of
separating x∗. We make this notion more precise in Sect. 3.2.

Observe that an infeasible basis of P ′ may also yield a violated GMI cut. An exam-
ple of this is depicted in Fig. 3, where the point x ′ is a basic infeasible solution, and
yet the associated GMI cut (represented by the dashed line), is violated by x∗.

In Sect. 3.2, we explain why any basic solution of P ′ (feasible or infeasible) is
likely to yield some violated GMI cuts when the constraint matrix A is very sparse,
as is the case with many practical MIP instances.

3.2 Sparsity and degeneracy

Let x ′ be a basic (possibly infeasible) solution of min{cx : x ∈ P ′}, defined in the
previous section, with associated basis B and non-basic columns N . Denote the i th
tableau row for this basis as (xB)i +∑

j∈IN
āi j x j = β̄i , where (xB)i is an inte-

ger variable, B−1 N = (āi j ), and β̄ = B−1b. Assume β̄i is non-integral and let
N (i) = { j ∈ IN : āi j 
= 0}. If N (i) ∩ IB̄ = ∅, then the GMI cut derived from this
tableau row has nonzero coefficients only for variables which have value 0 in x∗ and
is thus violated by x∗. This is because (xB)i has a cut coefficient of zero, and thus the
only nonzero cut coefficients correspond to x j ( j ∈ IN\IB̄).

Can such a tableau row exist? We argue that this can happen when |IB̄ \IB | is small
relative to m, and when the constraint matrix A is very sparse. The second condition
is often true for practical MIPs with many constraints and variables, including the
MIPLIB problems. As for the first condition, for problems in MIPLIB 3.0, |IB̄ |/|IB |
is 1.1 on the average, and 1.05 for the MIPLIB 2003 problems, where B̄ is the optimal
basis of L2, the LP relaxation after adding one round of GMI cuts.

Since x∗ is feasible for L1, it satisfies each tableau row for the basis B. Let ak stand
for the kth column of A. Then Ax∗ = b implies that

Bx∗B +
∑

k∈IB̄\IB

x∗k ak = b.
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B

B

A

N (i) B  =ø

Fig. 4 An example of a sparse tableau

Let ηk = B−1ak = (āik)
m
i=1. Then the equation above and Bx ′B = b imply that

x ′B − x∗B =
∑

k∈IB̄\IB

x∗k ηk . (8)

In other words, x ′ differs from x∗ in the i th component of IB if and only if
∑

k∈IB̄\IB

x∗k āik is nonzero.
Observe that |IB̄\IB | ≤ t . If the number of nonzeros in each vector ηk with

k ∈ IB̄\IB is less than m/t , then there are fewer than m nonzeros in the tableau
columns with indices in IB̄\IB . This implies that some tableau rows satisfy the con-
dition N (i) ∩ IB̄ = ∅; See Fig. 4 for an illustration of this condition. If these rows
correspond to basic integral variables with non-integral values in β̄, then there exist
GMI cuts based on B which are violated by x∗. This analysis did not assume that B
is feasible, just that B−1ak is sparse, for k ∈ IB̄\IB .

Even if the columns B−1ak , with k ∈ IB̄\IB are not too sparse, a GMI cut based
on the i th tableau row may be violated if x∗k = 0 for many k ∈ IB̄\IB (as x∗ is a
basic solution of L2, the above condition can hold only in the presence of degeneracy).
More generally, as (x ′ − x∗) j = 0 if j 
∈ IB̄ , (8) implies that if maxk∈IB̄\IB {x∗k } is
small, then so is ||x ′ − x∗||∞ and a GMI cut based on the i th tableau row violated by
x ′ is likely to be violated by x∗. These arguments suggest the following two ideas to
find a suitable B.

1. Find B such that B−1ak is sparse for k ∈ IB̄\IB .
2. Find B such that

∑
k∈IB̄\IB

x∗k is small.

3.3 The sparse basis heuristic

As suggested above, we next consider a heuristic to find an m × m basis B of a rect-
angular matrix Ã ∈ R

m×k for some k > m such that B−1 N is sparse. More precisely,
we let Ã = AB̄ . One approach to this problem is to solve the related problem: find a
basis B such that B−1 is sparse. This latter problem has recently been studied in [35].
If B−1 is sparse, than B−1 N is sparse assuming Ã (or N ) is sparse.

We use a heuristic different from the one proposed in [35], where the authors use
bipartite matchings in auxiliary graphs to find an appropriate B. We consider the sparse
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LU factorization approach of Suhl and Suhl [36] which is based on a combination of
the Markowitz criterion [33] for reducing fill-in during pivoting and threshold pivoting
for numerical stability. In particular, we consider the LU implementation in QSopt 1.0
[3] written by David Applegate and based on the Suhl and Suhl paper. We modify
the code so that it takes as input a rectangular matrix (namely A) instead of a square
matrix and returns a factorization of Ã as Ã = LU , where L is a square, lower tri-
angular matrix with ones on the diagonal, and U is rectangular and upper triangular.
That is, U = (U ′U ′′), where U ′ is a non-singular upper triangular matrix, and U ′′ is a
rectangular m × (k −m) matrix. The Markowitz criterion helps in keeping U sparse.
Finally we define B = LU ′ and therefore

B−1 N = (U ′)−1L−1 N = (U ′)−1U ′′.

Our hope is that as U ′ and U ′′ are sparse (U ′)−1U ′′ will be sparse. In general, the basis
B generated by this approach need not be a feasible basis. We refer to this heuristic
as sparse.

When we apply sparse to L2 obtained after the first round of GMI cuts, the basis
found has the property that N (i) ∩ IB̄ = ∅ for some tableau row in 31 out of 54
MIPLIB 3.0 problems in our test set, and 17 out of 20 problems in MIPLIB 2003.

3.4 The greedy heuristic

Given non-negative weights on the columns of a full row-rank matrix A ∈ R
m×n ,

in polynomial time one can obtain a maximum weight basis B of A via the greedy
algorithm for matroids [23]: start off with an empty set of columns B, sort the columns
of A by decreasing weight, and iterate through the sorted columns of A adding them
to B if they are not linearly dependent on the columns already in B. At the end of this
iterative process, B will have m columns and form a basis of A.

This motivates a heuristic greedy which assigns large weights to columns of A
which we want to be present in the basis, and small weights to the remaining columns
of A. We sort the variables by decreasing value of x∗i for i ∈ IB̄ (recall that all vari-
ables are assumed to have a lower bound of 0, and no upper bounds). We then use the
greedy algorithm to select a maximum weight basis B ′. We thus attempt to choose B
such that

∑
k∈IB̄\IB

x∗k is as small as possible, precisely the criteria suggested at the
end of Sect. 3.2.

For practical MIPs which have inequality constraints, and need slacks to be expre-
ssed in standard form, we distinguish between the slack and structural variables in the
original constraints. In order to get a sparse basis, we assign a weight of ωx∗i for some
large ω > 1 if x∗i is a slack variable. One drawback of this idea is that it may lead to
too many continuous (slack) variables in the basis B, leaving few integral variables in
B, and thus allowing the generation of only a small number of GMI cuts based on B.

3.5 The random basis heuristic

It is possible that the bases returned by the heuristics feas, sparse, and greedy
do not yield GMI cuts violated by x∗, in which case Algorithm 3 terminates. To let
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Algorithm 3 proceed when the above heuristics fail, and also to test if these heuristics
truly yield useful bases (yielding violated GMI cuts) of A with columns in IB̄ , we are
interested in generating a random basis of A, i.e., sampling from a uniform distribution
over all bases of A. This seems to be a hard problem, and a polynomial-time method
to generate a random basis of A seems not to be known.

We instead implement a simple randomized algorithm. We assign weights drawn
uniformly from [0, 1], and then apply the greedy algorithm discussed in the previous
section. This algorithm does not generate a basis uniformly at random: consider the
matrix

A =
[

1 2 1 1
0 0 1 2

]

with possible bases

B1 =
[

1 1
0 1

]
, B2 =

[
2 1
0 1

]
, B3 =

[
1 1
0 2

]
, B4 =

[
2 1
0 2

]
, B5 =

[
1 1
1 2

]
.

Assigning random weights from [0, 1] to the columns of A implies that the greedy
algorithm iterates through each permutation of the columns of A with equal proba-
bility. However, there are 24 such permutations, but 5 possible bases, and thus not all
bases are equally likely to be generated by the greedy algorithm. In particular, B5 will
be chosen with probability 4/24 while each of the remaining bases will be chosen with
probability 5/24. The above heuristic is easy to implement and is also quite useful
as we discuss in Sect. 5. We repeat the generation process (up to a default limit of 5
times) till a basis yields violated cuts.

4 Branching

Recall that the constraints Cx ≥ d in L2 were not required to be valid for M in order
for the GMI heuristics described in Sect. 3 to work. In particular if the constraints
in Cx ≥ d include branching constraints obtained at nodes of a branch-and-bound
tree, the heuristics described earlier can still be used to obtain globally valid rank-1
GMI cuts from each node. In fact, assume x̃ is a basic solution of the LP relaxation
at a branch-and-bound node. Let Cx ≥ d represent the constraints which are only
locally valid at that node of the tree (this will include the branching constraints), and
let Ax = b, x ≥ 0 be the original constraints. Using Algorithm 1, with input x̃ and
an appropriate basis of L1, we can generate cuts which are globally valid and may
separate x̃ .

Branching can also be used in a very different way. Consider system L2, an opti-
mal basis B̄ and its corresponding solution x∗. In Sect. 3 we presented a number of
heuristics which seek to obtain a basis B of L1 contained in the columns with indices
in IB̄ . Once IB̄ is determined, these heuristics did not use B̄ or x∗ in generating GMI
cuts. Thus, the heuristics presented could be made to work on any set I ′ ⊆ I such
that the corresponding columns contain a basis of L1. In this section we deviate from
the previous procedure by considering such sets I ′ different from IB̄ , and then using
the heuristics described earlier to find a basis.
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Fig. 5 The branch and gather heuristic

Let M2 be the MIP obtained by adding back the integrality constraints of L2. That is,

M2 = min{cx : Ax = b, Cx ≥ d, x ≥ 0, xi ∈ Z ∀i ∈ S}. (9)

We explore the branch-and-bound tree of M2 for a limited number of nodes. For this,
we solve the LP relaxation at each node and branch as usual, always exploring the node
with the minimum bound (i.e, best-bound branching). At each node of the search tree,
we let Cx ≥ d correspond to the rank-1 GMI cuts in (9) and the branching constraints
defining the node. Let the node solution be x̃ with associated basis B̃. Then the heuris-
tics described in Sect. 3 will search for a basis B of L1 contained in the columns in IB̃
(= I ′), but will check if the corresponding GMI cuts separate x∗, the root solution, not
x̃ . In Fig. 5, x∗ is contained in the interior of the LP relaxation of a MIP. As x∗ does
not lie on a face of the LP relaxation, our previous heuristics will not find a basis as
there is no basis of L1 contained in IB̄ . However, if we consider the nodes defined by
xi ≤ 0 and xi ≥ 1 with the node solutions depicted by x̃ , we see that there are vertices
of the LP relaxation (denoted by x ′) lying on the same faces as x̃ (for the branch
xi ≤ 0, x̃ = x ′) and thus our previous heuristics will find some basis contained in IB̃ .

The intuition behind exploring the node with the minimum bound is that we will
explore the node “most similar” to the root. Since this algorithm works by exploring
the branch-and-bound tree in order to gather cuts for the original root problem, we
call this the branch and gather heuristic, abbreviated as bg. When using this
algorithm we can use any subset of the heuristics described in the previous section in
order to find bases contained in the columns in IB̃ . In our default implementation, we
use feas and greedy and branch for five nodes.

5 Computational results

In this section we present lower bounds for problem instances in MIPLIB 3.0 [12] and
MIPLIB 2003 [1] obtained by running our code with different basis generation heuris-
tics with a time limit of one hour. In the case of MIPLIB 3.0, we ignore instances which
do not have any integrality gap, namely dsbmip, enigma and noswot, and instances
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where one round of GMI cuts close 100% of the integrality gap, namely air03, 10teams,
and mod010. We also omit instances for which Dash et al. [22] and Balas and Saxena
[8] report that optimizing (approximately) over the MIR closure does not change the
bound from the LP relaxation value. These are markshare1, markshare2, pk1, stein27
and stein45. In other words, we omit instances where there is no scope for improve-
ment over and above one round of GMI cuts and are left with 54 instances out of 65
from MIPLIB 3.0.

There are some instances in MIPLIB 2003 for which no integer solution is known,
namely liu, momentum3, stp3d, and t1717, and we omit them. We also omit disctom,
as it has no integrality gap, and manna81, where GMI cuts close 100% of the integral-
ity gap. We are left with 20 instances from MIPLIB 2003 not contained in MIPLIB
3.0.

5.1 Implementation details

After adding slack variables, we can assume MIP instances have the form

min{cx : x ∈ P, xi ∈ Z ∀i ∈ S},

where P = {x ∈ R
n : Ax = b, l ≤ x ≤ u} for some l, u ∈ R

n ∪ {−∞,+∞}, and
S ⊆ {1, . . . , n}. Given a tableau row based on any basis of the LP relaxation of a MIP,
and upper and lower bounds on variables, we generate GMI cuts using the CglTwomir
cut generator of COIN-OR [17] (which is available, for example, as a part of CBC
2.2.0) with the numerical parameters and options described in [21], except for one
change, described in the next paragraph. The GMI cut generated varies with the point
x∗ being separated if x∗ is not basic with respect to the basis defining the tableau row.

In general, when given a tableau row based on a basic optimal solution of the LP
relaxation, one usually computes a GMI cut if the corresponding basic variable is of
integer type and if the right-hand-side is fractional. This is guaranteed to yield a vio-
lated cut as the corresponding non-basic variables have zero value. In our application,
we try to separate a solution x∗ which is basic with respect to B̄, but is non-basic with
respect to B, where IB ⊂ IB̄ . As in Sect. 3, B stands for a basis of the original LP
relaxation, whereas B̄ stands for a basis of this relaxation plus previously generated
rank-1 GMI cuts. Therefore we generate GMI cuts based on B even when a basic
integer variable has integral value.

In our default separation algorithm, denoted as def, the first heuristic invoked is
feas. If it does not find any violated cuts then sparse is invoked, then greedy, then
random up to five times, and finally bg with a limit of five nodes.

5.2 Bounds at the root node

In Tables 1 and 2, we compare our results on MIPLIB 3.0 problems obtained by the
algorithm def with those obtained in [22] and [8] by solving MIP models to find
violated MIR cuts. To make the comparison with [22] as fair as possible, we run our
code using the same hardware and software settings, i.e., we use the same machine,
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Table 1 IPs of MIPLIB 3.0

Instance 1gmi # Cuts % Gap Time # Cuts % Gap Time % Gap Time
def closed def MIR closed MIR closed split

air04 8.08 7,992 19.37 3,745.26 294 9.18 3,600 91.23 864,360

air05 4.65 6,275 12.92 3,601.46 246 12.38 3,600 61.98 24,156

cap6000 41.65 34 62.41 14.65 316 49.77 3,600 65.17 1,260

fast0507 1.66 2,030 1.71 4,257.80 318 1.66 3,600 19.08 304,331

gt2 76.50 99 96.61 0.29 256 98.38 2,618 98.37 599

harp2 22.43 1,136 67.31 240.81 523 58.48 108 46.98 7,671

l152lav 1.55 2,362 48.65 402.71 128 6.41 3,600 95.20 496,652

lseu 7.74 61 84.63 0.12 350 91.84 3,600 93.75 32,281

mitre 82.86 1,031 100.00 59.51 1,126 100.00 1,396 100.00 5,330

mod008 20.89 90 62.50 0.62 203 98.95 201 99.98 85

nw04 66.08 192 100.00 84.74 270 93.30 3,600 100.00 996

p0033 56.82 53 83.18 0.10 110 87.42 2,552 87.42 429

p0201 16.89 773 61.28 6.66 990 74.31 3,600 74.93 31,595

p0282 3.70 431 96.85 3.55 1,419 99.55 3,600 99.99 58,052

p0548 41.04 501 94.26 2.67 1,317 96.11 3,600 99.42 9,968

p2756 0.46 466 96.85 17.05 671 57.57 3,600 99.90 12,673

seymour 8.35 12,551 20.79 3,613.54 559 8.35 3,600 61.52 775,116

operating system, compiler (g++ version 4.1.3 on a 1,452 MHz powerpc running
AIX 5.1), and the same version of ILOG CPLEX (release 9.1). The results in [8] were
obtained on a different machine type and operating system, but with a similar version
of CPLEX (release 9.0) and around the same timeframe. In all other tables, we use a
faster machine (a 4,208 MHz powerpc) and ILOG CPLEX 11.2.

Table 1 contains results for the pure integer problems in MIPLIB 3.0, and Table 2
contains results for the mixed-integer problems. In column 2 we give the percentage
integrality gap closed by one round of GMI cuts, i.e., cuts from the optimal tableau
of L1 (henceforth referred to as 1gmi). In columns 3, 4 and 5, we give, respectively,
the number of generated cuts, percentage integrality gap closed, and running time (in
seconds; it includes LP resolve time after adding cuts), respectively, for def, and in
columns 5, 6 and 7, we give the same information for the code in [22]. In columns 8
and 9 we give, respectively, the percentage integrality gap closed in [8] and the time
to do so. The numbers in columns 4 and 5 indicate that for many problems, especially
the smaller ones, our heuristic often obtains bounds comparable to those in [22] in
much less time. For example, for cap6000, gt2, p0282, fiber and pp08a, def closes a
significant fraction of the remaining integrality gap after the first round of GMI cuts,
and obtains a comparable bound to those in [22] and [8] in a fiftieth of the time or less.
Further, we improve on the best-known bounds for the objective function value over
the MIR closure for mkc, harp2 and rentacar.

A point to note is that as our heuristics primarily involve solving LPs, our code is
not affected very much by the quality of the components of the IP solver we use related
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Table 2 MIPs of MIPLIB 3.0

Instance 1gmi # Cuts % Gap Time # Cuts % Gap Time % Gap Time
def closed def MIR closed MIR closed split

arki001 29.26 293 35.47 394.84 133 33.94 3,600 83.05 193,536

bell3a 60.15 130 74.03 0.82 404 99.60 3,600 65.35 102

bell5 14.53 49 23.65 0.32 629 92.95 3,600 91.03 2,233

blend2 16.36 28 21.43 2.07 2,815 30.63 3,600 46.52 552

dano3mip 0.10 1,104 0.28 3,688.43 124 0.10 3,600 0.22 73,835

danoint 1.73 1,942 1.73 235.69 1,044 1.73 3,600 8.20 147,427

dcmulti 45.34 446 91.37 12.40 3,866 97.81 3,600 100.00 2,154

egout 55.93 85 98.67 0.30 264 100.00 10 100.00 18,179

fiber 64.26 551 98.12 14.78 329 94.70 3,600 99.68 163,802

fixnet6 10.87 602 86.58 15.55 4,766 93.38 3,600 99.75 19,577

flugpl 11.74 10 11.74 0.01 28 80.23 3,600 100.00 26

gen 60.23 190 91.81 10.50 115 100.00 825 100.00 46

gesa2 27.22 292 85.61 45.46 1,378 99.70 3,600 99.02 22,808

gesa2_o 30.12 345 58.84 78.47 1,640 96.05 3,600 99.97 8,861

gesa3 45.75 850 92.59 119.48 892 74.83 3,600 95.81 30,591

gesa3_o 49.11 870 93.39 108.54 1,382 70.82 3,600 95.20 6,530

khb05250 74.91 141 99.46 3.49 555 100.00 146 100.00 33

mas74 6.67 81 8.46 0.63 12 6.68 0 14.02 1,661

mas76 6.42 117 10.34 1.13 11 6.45 0 26.52 4,172

misc03 5.86 571 20.56 6.15 992 37.71 3,600 51.70 18,359

misc06 10.73 69 86.15 34.46 2,074 99.84 792 100.00 229

misc07 0.72 975 2.12 11.08 1,678 11.25 3,600 20.11 41,453

mkc 5.18 21,149 49.30 2,058.05 4,259 13.42 3,600 36.16 51,519

mod011 17.11 2,685 32.19 3,628.13 1,673 17.41 3,600 72.44 86,385

modglob 17.09 257 75.30 8.59 7,060 80.04 1,677 92.18 1,594

pp08a 52.36 263 93.75 3.12 1,687 95.76 3,600 97.03 12,482

pp08aCUTS 30.94 347 83.27 21.52 2,126 88.74 3,600 95.81 5,666

qiu 1.76 4,690 25.89 3,715.85 2,142 29.19 3,600 77.51 200,354

qnet1 14.27 943 79.31 437.03 784 66.22 3,600 100.00 21,498

qnet1_o 26.62 698 93.47 196.73 587 83.78 3,600 100.00 5,312

rentacar 29.05 308 44.95 1,123.07 265 23.40 3,600 0.00 0

rgn 4.71 176 99.59 0.54 1,142 99.60 3,600 100.00 222

rout 0.32 1,008 35.48 180.27 9,393 22.60 3,600 70.70 464,634

set1ch 38.11 673 83.59 30.66 694 76.47 3,600 89.74 10,768

swath 17.12 843 33.96 64.99 1,476 33.93 3,600 28.51 2,420

vpm1 9.09 255 89.78 5.10 386 96.30 387 100.00 5,010

vpm2 12.48 295 61.25 8.03 427 77.71 243 81.05 6,012
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Table 3 Performance on
MIPLIB 2003 problems

Instance 1gmi # cuts def % Gap closed Time def

a1c1s1 18.41 1,898 54.32 3,578.97

aflow30a 11.88 516 46.82 98.09

aflow40b 5.33 741 33.47 1,163.44

atlanta-ip 1.08 8,490 1.08 3,853.58

glass4 0.00 590 0.00 1.51

momentum1 38.17 1,867 41.14 4,169.05

momentum2 40.65 4,234 40.66 3,845.24

msc98-ip 44.58 48,073 46.79 3,601.84

mzzv11 11.43 19,069 24.70 3,701.73

mzzv42z 12.01 14,133 51.83 4,199.74

net12 6.89 14,773 13.58 3,631.19

nsrand-ipx 36.24 766 80.47 1,545.22

opt1217 19.12 22,944 32.28 3,601.71

protfold 5.04 13,145 11.70 3,648.65

rd-rplusc-21 0.00 2,558 0.00 1,491.32

roll3000 7.03 2,293 51.94 1,880.39

sp97ar 7.60 2,239 28.43 3,649.03

timtab1 23.59 1,269 77.80 21.62

timtab2 18.02 2,269 69.18 47.65

tr12-30 60.27 1,170 87.31 42.15

to cuts, branching etc., but is mainly affected by the LP solver component. Thus, on
average, the bounds we obtain in Tables 1 and 2 are not very different from the bounds
we obtain with CPLEX 11.2 in Table 4.

Table 3 contains the percentage gap closed with def for problems in MIPLIB 2003,
and the columns have the same meaning as the first four columns in Tables 1 and 2.
For these instances, the initial LP relaxation and the subsequent ones obtained after
adding cuts are quite a bit harder to solve than in the case of MIPLIB 3.0 instances.
Note that for 11 out of 20 problems, the time limit is reached. For a few instances, the
time limit is reached before feas stops generating cuts, and we do not even invoke
any other heuristics.

In Table 4, we report on the average integrality gap closed with different separation
algorithms and combinations of heuristics. As in earlier tables, “1gmi” stands for one
round of GMI cuts. We also give the average gaps closed in Dash et al. [22] (indi-
cated by “DGL”) and [8] (indicated by “Balas–Saxena”). These two papers do not
contain results for MIPLIB 2003. We give the average gap closed by the CglLandP
cut generator [9] in COIN-OR’s CBC 2.2.0 for MIPLIB 3.0 problems. To obtain this
number, we invoke the generator for one round (as opposed to 10 rounds in [4]), so
that only rank-1 GMI cuts are generated. We use the default settings except that we
do not limit the number of cuts generated. We could not obtain the average gap closed
for MIPLIB 2003 problems owing to numerical problems in the COIN-OR LP Solver
in some cases. We do not give the numbers of Bonami and Minoux [10], who close a
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Table 4 Average performance
on MIPLIB problems

MIPLIB 3.0 MIPLIB 2003

1gmi 26.09 18.37

DGL 62.53 −
Balas-Saxena 76.52 −
CglLandP 30.21 −
feas 43.96 27.64

sparse 38.56 29.25

greedy 42.62 31.03

random 41.67 25.78

random5 48.10 29.75

all 52.39 35.51

all-feas 48.51 35.49

all-sparse 50.52 34.10

all-greedy 51.90 33.38

all-random 51.13 35.05

def 62.16 39.68

def+bg100 64.58 40.82

non-trivial fraction of the integrality gap with their heuristic to find rank-1 GMI cuts,
as their code works only for 0–1 problems.

We then report on each of the heuristics used in isolation. For the problems in MIP-
LIB 3.0, feas seems to be the best, while sparse seems to be the weakest heuristic,
though by a small margin. However, this ordering of the heuristics does not hold for
the MIPLIB 2003 problems, where greedy is the best and random is the worst
performing. We suspect that for the small instances in MIPLIB 3.0, any basis in IB̄
yields useful cuts, but that is not the case for the larger instances in MIPLIB 2003.
In the latter case, the heuristics which use the ideas in Sect. 3.2, namely sparse and
greedy, are better than the other two heuristics.

The hybrid heuristic all, stands for all the basic heuristics (not bg) executed in the
same order as in def, though random is executed only once. Turning off the different
heuristics in all, yields bounds somewhat consistent with the ranking of the different
basic heuristics; turning off the best heuristic leads to the biggest drop in the lower
bounds. The heuristics seem to be better by a significant margin than any individual
one when combined together. Further, running random up to five times whenever
a point needs to be separated yields a fairly good bound which is better than any of
the heuristics individually (for MIPLIB 3.0), but is weaker than all, by a nontrivial
margin. We therefore claim that we can get a better bound by combining our heuris-
tics than we can get by simply generating the same number of random bases at each
iteration. The row indicated by def gives the performance of the default heuristic def
(it includes bg for 5 nodes and random up to 5 times). Finally, “def+bg100” stands
for the bounds obtained when we allow bg in def to generate up to 100 nodes per
invocation (and use up a lot of computing time).
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Table 5 Detailed statistics on
all MIPLIB problems

One round Many rounds

Bound # Cuts Density # Bases Time/round Time/lp

MIPLIB 3.0

1gmi 26.09 1 0 1 1 1

feas 31.23 0.80 2.49 34.20 1.15 3.12

sparse 30.84 0.55 2.86 10.00 1.02 0.74

greedy 32.40 0.67 7.93 26.83 5.20 4.45

MIPLIB 2003

1gmi 18.37 1 0 1 1 1

feas 20.78 0.79 2.75 24.11∗ 1.46∗ 6.43∗
sparse 21.65 0.55 2.52 17.60 1.35 3.85

greedy 21.17 0.69 3.14 31.25 2.82 7.40

In Table 5, we give some performance details of our individual heuristics (other
than bg, which is a hybrid). In columns 2–4, we report on the effect of a single round of
cutting-plane generation after adding GMI cuts from the initial tableau. In other words,
we are generating cuts to separate x∗, the basic optimal solution of L2. In column 2,
we give the average gap closed. Note that just one round of any of our heuristics yields
a non-trivial improvement over 1gmi. In column 3, we give the average of the ratio
of the number of violated cuts generated by a heuristic to the number of violated cuts
from 1gmi. For example, on the average, for MIPLIB 3.0 problems, feas generates
about 80% the number of violated cuts as compared to 1gmi. In column 4, we give a
measure of taleau density. This is the average number of nonzero entries correspond-
ing to nonzero variables in IB̄ in a tableau row associated with a basic integer variable
minus one (for the basic variable corresponding to the row). This number is zero for
the tableau rows returned by 1gmi.

The remaining columns give results from running the heuristics for multiple rounds
subject to a time limit of one hour. In columns 5–7, we give, respectively, the number
of generated bases (= rounds) and measures of average time to generate a basis, and
average time to resolve the LP after adding the generated cuts. The number in column
6 is computed as follows: for each problem instance, we compute the average time per
round to generate cuts (this consists of the time to find a basis, compute the associated
tableau, and generate the violated cuts) normalized by the time to generate the first
round of GMI cuts (computing the tableau + cut generation). We then average this
number across all problems in MIPLIB 3.0 and MIPLIB 2003. The number in the last
column is computed similarly, by taking the ratio of the average LP resolve time to the
LP resolve time after adding GMI cuts for a problem, and then averaging this ratio.

On the average, each round of feas takes just 15% more time than 1gmi, whereas
a round of sparse takes just 2% more time. Our implementation of greedy is more
expensive. The point of this column is to demonstrate that the time for an invocation
of feas or sparse is comparable to the time to generate the first round of GMI cuts,
and not too much more with greedy. In contrast, a round of cutting-plane generation
via solving an auxiliary MIP, as in [22] and [8], can be significantly more expen-
sive. Finally, the average LP resolve time is within a factor of 5 for all heuristics.
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In our implementation, we do not delete cuts, and hence LP resolves in later rounds
are more expensive per added cut than in earlier rounds. On the other hand, we usually
find and add fewer violated cuts in later rounds, and thus the ratio can be less than one.

One can interpret columns 5–7 as follows: on the average feas is 4.23 (=1.15+3.12)
times as time-consuming per round as 1gmi, and runs for 34.20 rounds; thus feas con-
sumes about 144.67 = 34.20 × 4.23 times the running time of 1gmito improve the
integrality gap closed from 26.09 to 43.96% (see Table 4). On the other hand, sparse
improves the gap closed to 38.56%, but is only about 18 times as expensive as 1gmi.
In the last three columns for feas with MIPLIB 2003 problems (marked by a ‘*’), we
omit the instance opt1217 as it skews these numbers significantly: for this instance
feas generates 1,803 bases.

5.3 Branch-and-cut

We now measure the effect of adding our cuts as globally valid cuts in a branch-and-
cut tree for some instances. Though a branch-and-cut algorithm often generates fewer
nodes than a pure branch-and-bound algorithm (with the same branching rules) in
achieving a given lower bound on the optimal solution, it often takes more time to do
so. The extra time spent in cut generation and solving harder LPs is often counter-
productive. This effect is especially pronounced for the small and easy problems in
MIPLIB 3.0, many of which can be solved in a few hundred nodes and a fraction of a
second. For example, CPLEX 11.2 solves p0201 in 107 nodes and 0.14 s and p0282
in 427 nodes and 0.09 s. Our default algorithm def takes over 10 s just to generate
rank-1 GMI cuts at the root node for p0201 (this is with CPLEX 11.2, and not with
CPLEX 9.1 as in Table 1).

Thus our moderately expensive cutting plane algorithm is unlikely to be effective
except where many thousands of nodes are needed to solve a MIP to optimality. We
therefore only consider problems from MIPLIB 2003 not contained in MIPLIB 3.0
(these are harder in general), and focus on a few problems where our cut generation
heuristics are not too time-consuming, i.e., def terminates in less than an hour in
Table 3 and yet improves the lower bound compared to the first round of GMI cuts.
These problems are aflow30a, aflow40b, nsrand-ipx, roll3000, timtab1, timtab2 and
tr12-30. We also consider a1c1s1 for the first experiment discussed below; if feas
alone is used to generate cuts, it yields a significantly better bound than one round of
GMI cuts, yet terminates in less than an hour. We perform three different experiments
to measure the effectiveness of our cuts.

In our first experiment, we check if there are any problems from the list above for
which branch-and-cut (with our cuts) is preferable to branch-and-bound. To do this, we
apply Algorithm 3 with feas until we do not find any violated cuts (MAX_ITER is set
to infinity). Starting from the augmented problem, we then perform branch-and-bound
for 30 min and compare its behaviour with branch-and-cut for 30 min where we add
cuts generated by feas at nodes of the branch-and-cut tree. We use CPLEX func-
tion calls to execute branch-and-bound via its default branching strategy. We execute
branch-and-cut with the same settings, except that we use CPLEX cut callbacks to
invoke feas. In both cases, we turn off all CPLEX cutting planes, presolve routines,
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Fig. 6 Performance on timtab1

and the dynamic search routine. The reason for the last choice is that CPLEX auto-
matically turns off dynamic search during banch-and-cut when user-defined cuts are
added. Note that CPLEX may execute our cut generation heuristic even at the root
node (say after fixing variables based on reduced costs).

The specific metrics of comparison are the time and number of nodes required to
close a given integrality gap. The purpose of this experiment is twofold. Firstly, we
want to verify that we can generate globally valid cuts at nodes of a branch-and-cut
tree which reduce the number of nodes needed to attain a given lower bound. Sec-
ondly, we want to check if our cuts help to increase the lower bound faster than pure
branch-and-bound for any problems in MIPLIB 2003. For five out of the eight prob-
lems we considered, the answer to the second question is true, and is false for the aflow
problems, and for roll3000.

In Fig. 6a, we plot the integrality gap closed as a function of time for both branch-
and-cut (denoted by ‘bc’) and branch-and-bound (denoted by ‘bb’) on timtab1, whereas
in Fig. 6b we plot the number of nodes explored as a function of time. We use a log-
arithmic scale for time, and for the number of nodes. The time instants at which we
measure the nodes and gap closed are approximately equal for the ‘bb’ and ‘bc’ curves,
and is the same across the two figures. Clearly the lower bound improves at a faster
rate for branch-and-cut than for branch-and-bound on timtab1, while the number of
nodes increases at a slower rate, and is more than a hundred times smaller at the end
of 30 min. Therefore our cuts clearly help in reducing the search tree size and the
time required to obtain a given lower bound for timtab1. A similar behaviour can be
observed for timtab2.

On the other hand, for roll3000 (see Fig. 7) by the time one node has been fully
explored by branch-and-cut at the end of about 50 s with a resulting integrality gap of
about 30%, branch-and-bound explores almost a 1,000 nodes and closes about 40% of
the integrality gap. Subsequently, the rate of growth of nodes in branch-and-bound is
slightly smaller than the rate of growth of nodes in branch-and-cut (possibly because
of the better bound). Thus, at the end of 30 min, a significantly better lower bound
is obtained via branch-and-bound even though about 50,000 nodes are explored as
opposed to 561 nodes in the case of branch-and-cut. Clearly, our cut generation pro-
cess is too expensive for this problem. A similar behaviour can be observed in the case
of aflow30a and aflow40b.
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Fig. 8 Performance on a1c1s1 and tr12-30

The situation is more confused for the remaining three problems. As can be seen
in Fig. 8, for a1c1s1 and tr12-30, the gap closed by branch-and-cut is worse for some
time, and then becomes better towards the 30 min mark. In the second problem, it is
clear early on (from the slope of the gap closed versus time curve) that branch-and-cut
will outpace branch-and-bound eventually, but not so in the case of a1c1s1.

The above experiment suggests that branch-and-cut with rank-1 GMI cuts gener-
ated at all nodes of the search tree may be competitive with branch-and-bound for
some problems from MIPLIB 2003, at least with the CPLEX 11.2 MIP solver, and
starting from the same root node. However, it is not clear what will happen once we
allow CPLEX to generate its own (potentially high rank cuts) at the root and also
employ dynamic search during branching. In our second experiment, we consider
the problems in the first experiment and analyze the quality of bounds obtained by
the rank-1 GMI cuts generated at the root by our heuristics. In Table 6, we give the
number of nodes (rounded to the nearest hundred) and time CPLEX—with default
settings—takes in order to obtain the same bound as that obtained by def without
branching. For only three problems (timtab1, timtab2, nsrand-ipx) is the time we take
to generate our bound competitive with the time taken by CPLEX. For timtab1, def
takes 22 s before it terminates. CPLEX, with default settings, takes 53 s and explores
18,400 nodes before it obtains the same lower bound. As we know that GMI cuts are
useful for this instance, we also compare the time taken if we let CPLEX aggressively
generate all cuts (“set mip cuts all 2”). Henceforth, we refer to CPLEX with default
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Table 6 Number of nodes required to recover bound using different CPLEX settings

Instance def time CPLEX nodes Time CPLEX+ nodes Time

tr12-30 42 0 1 0 1

timtab1 22 18,300 53 10,100 35

timtab2 48 2,719,500 18,475 492,700 4,541

nsrand-ipx 1,545 153,300 5,372 24,400 745

settings simply as CPLEX, and CPLEX with aggressive cut generation as “CPLEX+”.
For timtab2, def is substantially better than CPLEX, or CPLEX+. On the other hand,
for tr12-30, CPLEX takes less than a second (and performs no branching) in order to
achieve the same bound def takes 42 s to attain.

From the first and second experiments, it is clear that for timtab1 and timtab2 it is
likely that branch-and-cut with rank-1 GMI cuts generated by our heuristic will take
less time to find the optimal solution than CPLEX branch-and-bound (or more pre-
cisely cut-and-branch). In our final experiment, we compare our branch-and-cut code
with CPLEX and CPLEX+. We use the “def+bg100” setting (discussed in Table 4)
at the root, and the “def-bg” setting at nodes of the branch-and-cut tree. As before,
we turn off presolve and all solver cuts in our branch-and-cut enumeration.

We solve timtab1 via branch-and-cut in 1,593 s and 7,500 nodes (this number is
rounded to the nearest hundred) as compared to 3,689 s and 2,246,200 nodes with
CPLEX (and 4,092 s and 2,495,400 nodes with CPLEX+). We also solve timtab2 in
about 332,000 s, i.e., in about 92 h, and with 265,900 nodes. This latter problem is
not easy to solve. It was first solved in [14] by exploring about 17 million branch-
and-bound nodes with CPLEX 9 using 2,745 h of CPU time and problem-specific
cuts provided by Christian Liebchen, a formulator of the problem [29]. It was later
solved in 2008 in 22 h on a standard PC by Liebchen and Swarat by a problem specific
branch-and-cut method (see the MIPLIB 2003 web page). Therefore, our solution of
timtab2 is the first time it has been solved without problem specific techniques. Note
that timtab1 and timtab2 both involve general integer variables and thus the techniques
in [6] to generate globally valid GMI cuts cannot be employed. By solving a problem
we mean that CPLEX stops the branch-and-bound process when it establishes a gap
of at most 0.01% (the default value) between the incumbent integer solution and lower
bound. The “optimal solution values” we obtain for the two problems above match
those reported in MIPLIB 2003.

Though we explore 265,900 nodes in solving timtab2, the total number of rank-1
cuts added by our cut generator during the branch-and-cut process is only around
27,000 out of which 2,500 are added at the root node. In other words, fewer than one
cut is added per node. In general, as the rank-1 cuts only use constraints of the original
linear relaxation and do not use the branching constraints, we expect that there will be
fewer violated rank-1 cuts deeper in the tree. We did not try out ideas such as imposing
a skip factor—not generating a new round of cuts before processing a number of nodes
of the search tree—as proposed for GMI cuts in [6] (though we do not know if CPLEX
imposes this).
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6 Conclusions

In this paper we presented a heuristic to generate rank-1 GMI cuts and showed that,
for many MIPLIB problems, they can be used to obtain strong lower bounds, which
are comparable to the bounds obtained by approximately optimizing over the MIR
closure in [8] and [22]. Therefore, the rank-1 GMI cuts form a useful sub-class of the
rank-1 MIR cuts. Further, we can often obtain these comparable bounds in a hundredth
of the computing time.

We also used our heuristics to generate globally valid rank-1 GMI cuts in a branch-
and-cut setting for problems which have general integer variables, and demonstrated
that our heuristics are effective at finding violated cuts and significantly reducing the
size of the branch-and-cut tree for some MIPLIB problems. A smaller branch-and-cut
tree does not necessarily lead to less computing time. We solved timtab1 and tim-
tab2, two non-trivial problems from MIPLIB 2003, in significantly less time than the
state-of-the-art MIP solver, CPLEX 11.2 (it cannot solve timtab2 in 15 million nodes).
However, it is clear from the branch-and-cut experiments in the previous section that
much additional work needs to be performed before truly practical implementations
of our heuristics can be obtained.

A major issue which needs additional study is the rank of the cuts to be used. Even
though the current consensus seems to be that high rank cuts should not be used, it is
not clear that only rank-1 cuts should be used. We feel that allowing the original con-
straint system to be augmented by very sparse cuts, especially bound implications (e.g,
xi ≥ 1), before generating non-optimal bases and associated cuts may be a good idea.
Further, our cut generation heuristics can be speeded up by standard techniques such
as saving previously generated non-optimal bases and corresponding factorizations.
Finally, we did not use common techniques such as limiting the density or coefficient
magnitude variation of tableau rows to be used to generate cuts, nor did we perform
any cut management, such as deletion of inactive cuts.

One criticism of our approach could be that they involve the generation of a large
number of GMI cuts read from many tableaus. As the generation of GMI cuts in
floating-point arithmetic is known to be error-prone (see Margot [32]) and can lead to
invalid cuts, the use of a large number of tableaus in our method obviously increases
the likelihood of invalid cuts. In [18], along with Cook and Fukasawa, we show that
numerically safe GMI cuts can be generated in floating-point arithmetic. The tech-
niques described in [18] can directly be incorporated in the heuristic presented in this
article to make all generated cuts safe. Further, using the potentially weaker numeri-
cally safe cuts does not lead to a significant loss in the quality of lower bounds obtained
vis-a-vis the unsafe cuts, nor is there a noticeable increase in the density of the safe
cuts, for the MIPLIB problems tested in [18]. Based on these results, we are convinced
that even if some of the cuts generated in the experiments in this paper turn out to be
invalid, it is likely that if these invalid cuts were replaced by numerically safe GMI
cuts, there would be no significant change in lower bounds.

An interesting extension of the work in this paper we are currently exploring is in
the context of nonlinear programming problems which have nonlinear objectives/con-
straints in addition to many linear constraints. We could consider a solution of the
entire system of constraints, and then search for bases of the sub-system of linear
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constraints and generate GMI cuts based on these bases. For ibienst1, a MINLP with
a convex quadratic objective and linear constraints available in Hans Mittelmann’s
library MIQPlib [34], we can obtain GMI cuts in this manner and a resulting lower
bound in 3 s which CPLEX takes about 30 s and more than 100 nodes to attain.

Acknowledgments We would like to thank the referees for useful comments. We also thank Pierre Bonami
for information on using the CglLandP cut generator.
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