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Abstract Many interesting and fundamentally practical optimization problems,
ranging from optics, to signal processing, to radar and acoustics, involve constraints
on the Fourier transform of a function. It is well-known that the fast Fourier transform
(fft) is a recursive algorithm that can dramatically improve the efficiency for com-
puting the discrete Fourier transform. However, because it is recursive, it is difficult
to embed into a linear optimization problem. In this paper, we explain the main idea
behind the fast Fourier transform and show how to adapt it in such a manner as to
make it encodable as constraints in an optimization problem. We demonstrate a real-
world problem from the field of high-contrast imaging. On this problem, dramatic
improvements are translated to an ability to solve problems with a much finer grid
of discretized points. As we shall show, in general, the “fast Fourier” version of the
optimization constraints produces a larger but sparser constraint matrix and therefore
one can think of the fast Fourier transform as a method of sparsifying the constraints
in an optimization problem, which is usually a good thing.
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54 R. J. Vanderbei

1 Fourier transforms in engineering

Many problems in engineering involve maximizing (or minimizing) a linear functional
of an unknown real-valued design function f subject to constraints on its Fourier trans-
form ̂f at certain points in transform space. Examples include antenna array synthesis
(see, e.g., [11,12,15]), FIR filter design (see, e.g., [3,22,23]), and coronagraph design
(see, e.g., [6–10, 13,16,18,19]). If the design function f can be constrained to vanish
outside a compact interval C = (−a, a) of the real line centered at the origin, then we
can write the Fourier transform as

̂f (ξ) =
a

∫

−a

e2π i xξ f (x)dx

and an optimization problem might look like

maximize

a
∫

−a

c(x) f (x)dx

subject to −ε ≤ � ̂f (ξ) ≤ ε, ξ ∈ D
−ε ≤ � ̂f (ξ) ≤ ε, ξ ∈ D
0 ≤ f (x) ≤ 1, x ∈ C,

(1)

where D is a given subset of the real line, ε is a given constant, and �(z) and �(z)
denote the real and imaginary parts of the complex number z. In Sect. 7, we will discuss
a specific real-world problem that fits a two-dimensional version of this optimization
paradigm and for which dramatic computational improvements can be made.

Problem (1) is linear but it is infinite dimensional. The first step to making a tracta-
ble problem is to discretize both sets C and D so that the continuous Fourier transform
can be approximated by a discrete Riemann sum:

̂f j =
n

∑

k=−n

e2π ik�x j�ξ fk�x, −n ≤ j ≤ n. (2)

Here, n denotes the level of discretization,

�x = 2a

2n + 1
,

�ξ denotes the discretization spacing in transform space, fk = f (k�x), and ̂f j ≈
̂f ( j�ξ).

Computing the discrete approximation (2) by simply summing the terms in its def-
inition requires on the order of N 2 operations, where N = 2n + 1 is the number
of discrete points in both the function space and the transform space (later we will
generalize to allow a different number of points in the discretization of C and D).
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Choosing �ξ too large creates redundancy in the discrete approximation due to
periodicity of the complex exponential function and hence one generally chooses �ξ

such that

�x�ξ ≤ 1

N
.

In many real-world applications, �ξ is chosen so that this inequality is an equality:
�ξ = 1/(N�x). In this case, the Riemann sum approximation is called the discrete
Fourier transform.

2 A fast Fourier transform

Over the past half century there has been an explosion of research into algorithms for
efficiently computing Fourier transforms. Any algorithm that can do the job in a con-
stant times N log N multiplications/additions is called a fast Fourier transform (see,
e.g., [1,4,5,14]). There are several algorithms that can be called fast Fourier trans-
forms. Here, we present one that applies naturally to Fourier transforms expressed as
in (2). In this section, we assume that �ξ = 1/(N�x).

A sum from −n to n has an odd number of terms: N = 2n + 1. Suppose, for this
section, that N is a power of three:

N = 3m .

Fast Fourier transform algorithms assume that it is possible to factor N into a product

N = N0 N1.

For the algorithm of this section, we put

N0 = 3, and N1 = 3m−1.

The first key idea in fast Fourier transform algorithms is to write the single sum (1) as
a double sum and simultaneously to represent the discrete set of transform values as a
two-dimensional array of values rather than as a one-dimensional vector. Specifically,
we decompose k as

k = N0k1 + k0

so that

−n ≤ k ≤ n ⇐⇒ −n0 ≤ k0 ≤ n0 and − n1 ≤ k1 ≤ n1,

where

n0 = (N0 − 1)/2 = (3 − 1)/2 = 1
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56 R. J. Vanderbei

and

n1 = (N1 − 1)/2 = (3m−1 − 1)/2.

Similarly, we decompose j as

j = N1 j1 + j0

so that

−n ≤ j ≤ n ⇐⇒ −n1 ≤ j0 ≤ n1 and − 1 ≤ j1 ≤ 1.

With these notations, we rewrite the Fourier transform (2) as a double sum:

̂f j0, j1 =
1

∑

k0=−1

n1
∑

k1=−n1

e2π i(N0k1+k0)�x(N1 j1+ j0)�ξ fk0,k1�x, (3)

where fk0,k1 = fN0k1+k0 and ̂f j0, j1 = ̂fN1 j1+ j0 . Distributing the multiplications over
the sums, we can rewrite the exponential as

e2π i(N0k1+k0)�x(N1 j1+ j0)�ξ

= e2π i N0k1�x(N1 j1+ j0)�ξ e2π ik0�x(N1 j1+ j0)�ξ

= e2π i N0k1�x N1 j1�ξ e2π i N0k1�x j0�ξ e2π ik0�x(N1 j1+ j0)�ξ

= e2π i N0k1�x j0�ξ e2π ik0�x(N1 j1+ j0)�ξ ,

where the last equality follows from our assumption that N0 N1�x�ξ = N�x�ξ =1.
Substituting into (3), we get

̂f j0, j1 =
1

∑

k0=−1

e2π ik0�x(N1 j1+ j0)�ξ

⎛

⎝

n1
∑

k1=−n1

e2π i N0k1�x j0�ξ · fk0,k1

⎞

⎠ �x .

We can compute this nested sum in two steps:

g j0,k0 =
n1
∑

k1=−n1

e2π i N0k1�x j0�ξ fk0,k1�x,
−n1 ≤ j0 ≤ n1,

−1 ≤ k0 ≤ 1
(4)

̂f j0, j1 =
1

∑

k0=−1

e2π ik0�x j�ξ g j0,k0 ,
−n1 ≤ j0 ≤ n1,

−1 ≤ j1 ≤ 1.

By design, computing ̂f j0, j1 for −n1 ≤ j0 ≤ n1 and −1 ≤ j1 ≤ 1 is equivalent to
computing ̂f j for −n ≤ j ≤ n.
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2.1 Complexity

If we compute ̂f j0, j1 in two steps according to the equations given above, then the
number of multiply/adds is

N 2
1 N0 + N N0 = N (N1 + N0).

On the other hand, the one-step algorithm given by (2) requires N 2 multiply/adds.
Hence, the two-step algorithm beats the one-step algorithm by a factor of

N 2

N (N1 + N0)
= N

N1 + N0
≈ N/N1 = N0 = 3.

2.2 Recursive application

One can do better by iterating the above two-step algorithm. From the formula for
g j0,k0 given in (4), we see that g is a discrete Fourier transform of a subset of the
elements of the vector { fk : k = −n, . . . , n} obtained by sampling f at a cadence
of one every N0 elements. And, the coefficient N0�x�ξ in the exponential equals
N0/N = 1/N1, which again matches the number of terms in the sum. Hence, we can
apply the two-step algorithm again to this Fourier transform. The second key compo-
nent of the fast Fourier transform is the observation that this process can be repeated
until the Fourier transform only involves a sum consisting of a single term.

Let IN denote the number of multiply/adds needed using the recursive algorithm
to solve a problem of size N = 3m . Keeping in mind that N0 = 3, we get

IN = I3m = 3I3m−1 + 3 · 3m

= 3(3I3m−2 + 3 · 3m−1) + 3m+1

= 32 I3m−2 + 2 · 3m+1

...

= 3k I3m−k + k · 3m+1

...

= 3m I30 + m · 3m+1

= 3m(1 + 3m)

= N (1 + 3 log3 N ).

Hence, the recursive variant of the algorithm takes on the order of N log3 N operations.

3 A general factor-based algorithm

The advantage of fast Fourier transforms, such as the one presented in the previous
section, is that they have order N log N complexity. But, they have disadvantages too.
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58 R. J. Vanderbei

One disadvantage is the need to apply the basic two-step computation recursively.
Recursion is fine for computing a Fourier transform, but our aim is to encode a Fourier
transform within an optimization model. In such a context, it is far better to use a
non-recursive algorithm.

A simple modification to the two-step process described in the previous section
produces a variant of the two-step algorithm that makes a more substantial improve-
ment in the initial two-step computation than what we obtained before. The idea is to
factor N into a pair of factors with each factor close to the square-root of N rather than
into 3 and N/3. Indeed, in this section, we assume, as before, that N can be factored
into

N = N0 N1

but we do not assume that N0 = 3. In fact, we prefer to have N0 ≈ N1. As before, we
assume that N = 2n + 1 is odd and therefore that both N0 and N1 are odd:

N0 = 2n0 + 1 and N1 = 2n1 + 1.

At the same time, we will now assume that the number of points in the discretiza-
tion of the Fourier transform does not necessarily match the number of points in the
discretization of the function itself. In many real-world examples, the “resolution” of
the one discretization does not need to match the other and artificially enforcing such
a match invariably results in a slower algorithm. So, suppose that the discrete Fourier
transform has the form

̂f j =
n

∑

k=−n

e2π ik�x j�ξ fk�x, −m ≤ j ≤ m, (5)

and let M = 2m + 1 denote the number of elements in the discretized transform.
Again, M is odd and therefore we factor it into a product M = M0 M1 of two odd
factors:

M0 = 2m0 + 1 and M1 = 2m1 + 1.

If we now decompose our sequencing indices k and j into

k = N0k1 + k0 and j = M0 j1 + j0,

we get

̂f j0, j1

=
n0
∑

k0=−n0

n1
∑

k1=−n1

e2π i N0k1�x M0 j1�ξ e2π i N0k1�x j0�ξ e2π ik0�x(M0 j1+ j0)�ξ · fk0,k1�x .
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As before, we need to assume that the first exponential factor evaluates to one. To
make that happen, we assume that N0 M0�x�ξ is an integer. In real-world problems,
there is generally substantial freedom in the choice of each of these four factors and
therefore guaranteeing that the product is an integer is generally not a restriction.
With that first exponential factor out of the way, we can again write down a two-step
algorithm

g j0,k0 =
n1
∑

k1=−n1

e2π i N0k1�x j0�ξ fk0,k1�x,
−m0 ≤ j0 ≤ m0,

−n0 ≤ k0 ≤ n0,

̂f j0, j1 =
n0
∑

k0=−n0

e2π ik0�x(M0 j1+ j0)�ξ g j0,k0 ,
−m0 ≤ j0 ≤ m0
−m1 ≤ j1 ≤ m1.

3.1 Complexity

The number of multiply/adds required for this two-step algorithm is

N M0 + M N0 = M N

(

1

M1
+ 1

N1

)

.

If M ≈ N and M1 ≈ N1 ≈ √
N , the complexity simplifies to

2N
√

N .

Compared to the one-step algorithm, which takes N 2 multiply/adds, this two-step
algorithm gives an improvement of a factor of

√
N/2. This first-iteration improve-

ment is much better than the factor of 3 improvement from the first iteration of the
recursive algorithm of the previous section. Also, if M is much smaller than N , we
get further improvement over the full N × N case.

Of course, if M0, M1, N0, and N1 can be further factored, then this two-step algo-
rithm can be extended in the same manner as was employed for the algorithm of the
previous section successively factoring M and N until it is reduced to prime factors.
But, our eventual aim in this paper is to embed these algorithms into an optimization
algorithm and so we will focus our attention in this paper just on two-step algorithms
and not their recursive application.

4 Fourier transforms in 2D

Many real-world optimization problems, and in particular the one to be discussed in
Sect. 7, involve Fourier transforms in more than one dimension. It turns out that the
core idea in the algorithms presented above, replacing a one-step computation with a
two-step equivalent, presents itself in this higher-dimensional context as well [17].
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Consider a two-dimensional Fourier transform

̂f (ξ, η) =
∫∫

e2π i(xξ+yη) f (x, y)dydx

and its discrete approximation

̂f j1, j2 =
n

∑

k1=−n

n
∑

k2=−n

e2π i(xk1 ξ j1+yk2 η j2 ) fk1,k2�y�x, −m ≤ j1, j2 ≤ m,

where

xk = k�x, −n ≤ k ≤ n,

yk = k�y, −n ≤ k ≤ n,

ξ j = j�ξ, −m ≤ j ≤ m,

η j = j�η, −m ≤ j ≤ m,

fk1,k2 = f (xk1 , yk2), −n ≤ k1, k2 ≤ n
̂f j1, j2 = ̂f (ξ j1, η j2), −m ≤ j1, j2 ≤ m.

Performing the calculation in the obvious way requires M2 N 2 complex additions
and a similar number of multiplies. However, we can factor the exponential into the
product of two exponentials and break the process into two steps:

g j1,k2 =
n

∑

k1=−n

e2π i xk1 ξ j1 fk1,k2�x, −m ≤ j1 ≤ m,−n ≤ k2 ≤ n,

̂f j1, j2 =
n

∑

k2=−n

e2π iyk2 η j2 g j1,k2�y, −m ≤ j1, j2 ≤ m,

It is clear that, in this context, the two-step approach is simply to break up the two-
dimensional integral into a nested pair of one-dimensional integrals. Formulated this
way, the calculation requires only M N 2 + M2 N complex additions (and a similar
number of multiplications).

The real-world example we shall discuss shortly involves a two-dimensional Fou-
rier transform. Given that the idea behind speeding up a one-dimensional Fourier
transform is to reformulate it as a two-dimensional transform and then applying the
two-step speed up trick of the two-dimensional transform, we shall for the rest of the
paper restrict our attention to problems that are two dimensional.

5 Exploiting symmetry

Before discussing real-world examples and associated computational results, it is help-
ful to make one more simplifying assumption. If we assume that f is invariant under
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Fast Fourier optimization 61

reflection about both the x and y axes, i.e., f (−x, y) = f (x, y) and f (x,−y) =
f (x, y) for all x and y, then the transform has this same symmetry and is in fact
real-valued. In this case, it is simpler to use an even number of grid-points (N = 2n
and M = 2m) rather than an odd number and write the straightforward algorithm for
the two-dimensional discrete Fourier transform as

̂f j1, j2 = 4
n

∑

k1=1

n
∑

k2=1

cos(2πxk1ξ j1) cos(2πyk2η j2) fk1,k2�y�x, 1 ≤ j1, j2 ≤ m,

(6)

where

xk = (k − 1/2)�x, 1 ≤ k ≤ n,

yk = (k − 1/2)�y, 1 ≤ k ≤ n,

ξ j = ( j − 1/2)�ξ, 1 ≤ j ≤ m,

η j = ( j − 1/2)�η, 1 ≤ j ≤ m,

fk1,k2 = f (xk1 , yk2), 1 ≤ k1, k2 ≤ n
̂f j1, j2 ≈ ̂f (ξ j1, η j2), 1 ≤ j1, j2 ≤ m.

The two-step algorithm then takes the following form:

g j1,k2 = 2
n

∑

k1=1

cos(2πxk1ξ j1) fk1,k2�x, 1 ≤ j1 ≤ m, 1 ≤ k2 ≤ n,

̂f j1, j2 = 2
n

∑

k2=1

cos(2πyk2η j2)g j1,k2�y, 1 ≤ j1, j2 ≤ m,

5.1 Complexity

The complexity of the straightforward one-step algorithm is m2n2 and the complexity
of the two-step algorithm is mn2 + m2n. Since m = M/2 and n = N/2, we see that
by exploiting symmetry the straightforward algorithm gets speeded up by a factor of
16 and the two-step algorithm gets speeded up by a factor of 8. But, the improvement
is better than that as complex arithmetic has also been replaced by real arithmetic. One
complex add is the same as two real adds and one complex multiply is equivalent to
four real multiplies and two real adds. Hence, complex arithmetic is about four times
more computationally expensive than real arithmetic.

6 Matrix notation

As Fourier transforms are linear operators it is instructive to express our algorithms
in matrix/vector notation. In this section, we shall do this for the two-dimensional
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Fourier transform. To this end, let F denote the n × n matrix with elements fk1,k2 , let
G denote the m × n matrix with elements g j1,k2 , let ̂F denote the m × m matrix with
elements ̂f j1, j2 , and let K denote the m × n Fourier kernel matrix whose elements are

κ j1,k2 = cos(2πxk1ξ j1)�x .

For notational simplicity, assume that the discretization in y is the same as it is in x ,
i.e., �x = �y, and that the discretization in η is the same as it is in ξ , i.e., �η = �ξ .
Then, the two-dimensional Fourier transform ̂F can be written simply as

̂F = K F K T

and the computation of the transform in two steps is just the statement that the two
matrix multiplications can, and should, be done separately:

G = K F
̂F = G K T .

When linear expressions are passed to a linear programming code, the variables
are passed as a vector and the constraints are expressed in terms of a matrix of coef-
ficients times this vector. The matrix F above represents the variables in the optimi-
zation problem. If we let fk , k = 1, . . . , n denote the n columns of this matrix, i.e.,
F = [ f1 f2 · · · fn], then we can list the elements in column-by-column order to
make a column vector (of length n2):

vec(F) =

⎡

⎢

⎢

⎢

⎣

f1
f2
...

fn

⎤

⎥

⎥

⎥

⎦

.

Similarly, we can list the elements of G and ̂F in column vectors too:

vec(G) =

⎡

⎢

⎢

⎢

⎣

g1
g2
...

gn

⎤

⎥

⎥

⎥

⎦

and vec(̂F) =

⎡

⎢

⎢

⎢

⎣

̂f1
̂f2
...
̂fm

⎤

⎥

⎥

⎥

⎦

.

It is straightforward to check that

vec(G) =

⎡

⎢

⎢

⎢

⎣

K
K

. . .

K

⎤

⎥

⎥

⎥

⎦

vec(F)
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and that

vec(̂F) =

⎡

⎢

⎢

⎢

⎣

κ1,1 I κ1,2 I · · · κ1,n I
κ2,1 I κ2,2 I · · · κ2,n I

...
...

. . .
...

κm,1 I κm,2 I · · · κm,n I

⎤

⎥

⎥

⎥

⎦

vec(G),

where I denotes an m × m identity matrix.
The matrices in these two formulae are sparse: the first is block diagonal and the

second is built from identity matrices. Passing the constraints to a solver as these two
sets of constraints introduces new variables and more constraints, but the constraints
are very sparse. Alternatively, if we were to express vec(̂F) directly in terms of vec(F),
these two sparse matrices would be multiplied together and a dense coefficient matrix
would be passed to the solver. It is often the case that optimization problems expressed
in terms of sparse matrices solve much faster than equivalent formulations involv-
ing dense matrices even when the latter involves fewer variables and/or constraints
(see, e.g., [20]).

7 A real-world example: high-contrast imaging

Given the large number of planets discovered over the past decade by so-called “indi-
rect” detection methods, there is great interest in building a special purpose telescope
capable of imaging a very faint planet very close to its much brighter host star. This
is a problem in high-contrast imaging. It is made difficult by the fact that light is a
wave and therefore point sources, like the star and the much fainter planet, produce
not just single points of light in the image but rather diffraction patterns—most of the
light lands where ray-optics suggests it will but some of the light lands nearby but
not exactly at this point. In a conventional telescope, the “wings” of the diffraction
pattern produced by the star are many orders of magnitude brighter than any planet
would be at the place where the planet might be. Hence, the starlight outshines the
planet and makes the planet impossible to detect. But, it is possible to customize the
diffraction pattern by designing an appropriate filter, or a mask, to put on the front of
the telescope. While it is impossible to concentrate all of the starlight at the central
point—to do so would violate the uncertainty principle—it is possible to control it in
such a way that there is a very dark patch very close to the central spot.

Suppose that we place a filter over the opening of a telescope with the property
that the transmissivity of the filter varies from place to place over the surface of the
filter. Let f (x, y) denote the transmissivity at location (x, y) on the surface of the
filter ((0, 0) denotes the center of the filter). It turns out that the electromagnetic field
in the image plane of such a telescope associated with a single point on-axis source
(the star) is proportional to the Fourier transform of the filter function f . Choosing
units in such a way that the telescope’s opening has a diameter of one, the Fourier
transform can be written as
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64 R. J. Vanderbei

̂f (ξ, η) =
1/2
∫

−1/2

1/2
∫

−1/2

e2π i(xξ+yη) f (x, y)dydx . (7)

The intensity of the light in the image is proportional to the magnitude squared of the
electromagnetic field.

Assuming that the underlying telescope has a circular opening of diameter one, we
impose the following constraint on the function f :

f (x, y) = 0 for x2 + y2 > (1/2)2.

As often happens in real-world problems, there are multiple competing goals. We
wish to maximize the amount of light that passes through the filter and at the same
time minimize the amount of light that lands within a dark zone D of the image plane.
If too much light lands in the dark zone, the telescope will fail to detect the planets it
is designed to find. Hence, this latter objective is usually formulated as a constraint.
This leads to the following optimization problem:

maximize
∫∫

f (x, y)dydx

subject to
∣

∣ ̂f (ξ, η)
∣

∣

2 ≤ ε, (ξ, η) ∈ D,

f (x, y) = 0, x2 + y2 > (1/2)2,

0 ≤ f (x, y) ≤ 1, for all x, y.

(8)

Here, ε is a small positive constant representing the maximum level of brightness
of the starlight in the dark zone. Without imposing further symmetry constraints on
the function f , the Fourier transform ̂f is complex valued. Hence this optimization
problem has a linear objective function and both linear constraints and convex qua-
dratic inequality constraints. Hence, a discretized version can be solved (to a global
optimum) using, say, interior-point methods.

Assuming that the filter can be symmetric with respect to reflection about both axes
(in real-world examples, this is often—but not always—possible; see [2] for several
examples), the Fourier transform can be written as

̂f (ξ, η) = 4

1/2
∫

0

1/2
∫

0

cos(2πxξ) cos(2πyη) f (x, y)dydx .

In this case, the Fourier transform is real and so the convex quadratic inequality con-
straint in (8) can be replaced with a pair of inequalities,

−√
ε ≤ ̂f (ξ, η) ≤ √

ε,

making the problem an infinite dimensional linear programming problem.
Figure 1 shows an ampl model formulation of this problem expressed in the straight-

forward one-step manner. Figure 2, on the other hand, shows an ampl model for the

123
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Fig. 1 ampl model for discretized version of problem (8) assuming that the mask is symmetric about the
x and y axes. The dark zone D is a pair of sectors of an annulus with inner radius 4 and outer radius 20.
The optimal solution is shown in Fig. 3

same problem but with the Fourier transform expressed as a pair of transforms—the
so-called two-step process.

Figures 3 and 4 show, on their left, the optimal solution for the two models and, on
their right, the star’s image in a logarithmic stretch. Figure 5 shows that the two optimal
solutions are essentially the same except for the improved resolution in the two-step
version provided by a larger value of n (n = 1, 000 vs. n = 150). The logarithmic
stretch of the star’s image is necessary to show that the dark zone is really ten orders
of magnitude darker than the brightest point but it also makes the star’s image appear
far from a “point of light” that one would expect to see. Figure 6 shows the image in
both a linear and a logarithmic stretch for comparison.

Using loqo [21] as the interior-point method to solve the problems, both versions
solve in a few hours on a modern computer. It is possible to solve even larger instances,
say n = 2,000, if one is willing to wait a day or so for a solution. Ultimately, higher
resolution is actually important because manufacturing these masks involves replacing
the pixellated mask with a spline-fitted smooth approximation and it is important to
get this approximation correct.

Table 1 summarizes problem statistics for the two versions of the model as well as a
few other size choices. Table 2 summarizes solution statistics for these same problems.
These problems were run as a single thread on a GNU/Linux (Red Hat Enterprise Li-
nux Server release 5.7) x86_64 server with dual Xeon X5460s cpus (3.16 GHz with 4
cores each), 32 GB of RAM and a 6.1 MB cache.
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66 R. J. Vanderbei

Fig. 2 ampl model reformulated to exploit the two-step algorithm. The optimal solution is shown in
Fig. 4
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Fig. 3 The optimal filter from the one-step model shown in Fig. 1, which turns out to be purely opaque
and transparent (i.e., a mask), and a logarithmic plot of the star’s image
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Fig. 4 The optimal filter from the two-step model shown in Fig. 2 and a logarithmic plot of the star’s image

Fig. 5 Close up of the two masks to compare resolution
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Fig. 6 Logarithmic stretches are useful but can be misleading. Left the image of the star shown in a linear
stretch. Right the same image shown in a logarithmic stretch
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Table 1 Comparison between a few sizes of the one-step model shown in Fig. 1 and a few sizes of the
two-step model shown in Fig. 2

Model n m Constraints Variables Nonzeros Arith. ops.

One step 150 35 976 17,672 17,247,872 17,196,541,336

One step 250 35 * * * *

Two step 150 35 7,672 24,368 839,240 3,972,909,664

Two step 500 35 20,272 215,660 7,738,352 11,854,305,444

Two step 1,000 35 38,272 822,715 29,610,332 23,532,807,719

The column labeled nonzeros reports the number of nonzeros in the constraint matrix of the linear pro-
gramming problem and the column arith. ops. The One-Step-250x35 problem is too large to solve
by loqo, which is compiled for a 32-bit architecture operating system

Table 2 Hardware-specific performance comparison data

Model n m Iterations Primal objective Dual objective Cpu time (s)

One step 150 35 54 0.05374227247 0.05374228041 1,380

One step 250 35 * * * *

Two step 150 35 185 0.05374233071 0.05374236091 1,064

Two step 500 35 187 0.05395622255 0.05395623990 4,922

Two step 1,000 35 444 0.05394366337 0.05394369256 26,060

The results shown here were obtained using the default value for all of loqo’s tunable parameters. It is
possible to reduce the iteration counts to about 100 or less on all the problems by increasing the value of
the epsdiag parameter to about 1e-9

Real telescopes have opennings that are generally not just open unobstructed disks
but, rather, typically have central obstructions supported by spiders. It is easy to extend
the ideas presented here to handle such situations; see [2].

As explained in earlier sections, the two-step algorithm applied to a one-dimen-
sional Fourier transform effectively makes a two-dimensional representation of the
problem and applies the same two-step algorithm that we have used for two-dimen-
sional Fourier transforms. It is natural, therefore to consider whether we can get more
efficiency gains by applying the two-step algorithm to each of the iterated one-dimen-
sional Fourier transforms that make up the two-step algorithm for the two-dimensional
Fourier transform. We leave such investigations for future work.
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