
Math. Prog. Comp. (2015) 7:39–70
DOI 10.1007/s12532-014-0074-y

FULL LENGTH PAPER

Alternating proximal gradient method for sparse
nonnegative Tucker decomposition

Yangyang Xu

Received: 4 June 2013 / Accepted: 7 May 2014 / Published online: 20 May 2014
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014

Abstract Multi-way data arises in many applications such as electroencephalography
classification, face recognition, text mining and hyperspectral data analysis. Tensor
decomposition has been commonly used to find the hidden factors and elicit the intrin-
sic structures of the multi-way data. This paper considers sparse nonnegative Tucker
decomposition (NTD), which is to decompose a given tensor into the product of a
core tensor and several factor matrices with sparsity and nonnegativity constraints. An
alternating proximal gradient method is applied to solve the problem. The algorithm is
then modified to sparse NTD with missing values. Per-iteration cost of the algorithm
is estimated scalable about the data size, and global convergence is established under
fairly loose conditions. Numerical experiments on both synthetic and real world data
demonstrate its superiority over a few state-of-the-art methods for (sparse) NTD from
partial and/or full observations. The MATLAB code along with demos are accessible
from the author’s homepage.

Keywords Sparse nonnegative Tucker decomposition · Alternating proximal
gradient method · Non-convex optimization · Sparse optimization

Mathematics Subject Classification (2000) 49M20 · 65B05 · 90C26 · 90C30 ·
90C52

1 Introduction

A tensor is a multi-dimensional array. For example, a vector is a first-order tensor, and a
matrix is a second-order tensor. The order of a tensor is the number of dimensions, also

Y. Xu (B)
Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA
e-mail: yangyang.xu@rice.edu

123

40 Y. Xu

called way or mode. Tensors naturally arise in the applications that collect data along
multiple dimensions, including space, time, and spectrum, from different subjects
(e.g., patients), under varying conditions, and in different modalities. They can also
be created by tensorization of lower dimensional data [6]. Examples include medical
data (CT, MRI, EEG), text data and hyperspectral images. An efficient approach to
elicit the intrinsic structure of multi-dimensional data is tensor decomposition. Two
commonly used tensor decompositions are CANDECOMP/PARAFAC decomposition
(CPD) [5,13] and Tucker decomposition (TD) [32]. CPD decomposes an N th-order
tensor M into the product of N factor matrices A1, . . . , AN , and TD decomposes M
into the product of a core tensor C and N factor matrices A1, . . . , AN .

This paper focuses on sparse nonnegative Tucker decomposition (NTD) [18], which
imposes nonnegativity and uses �1-regularization terms to promote sparsity structure
on the core tensor and/or factor matrices. Nonnegativity allows only additivity, so the
solutions are often intuitive to understand and explain. Promoting the sparsity of the
core tensor aims at improving the interpretability of the solutions. Roughly speaking,
the core tensor interacts with all the factor matrices, and a simple one is often preferred
[15]. Consider a three-way tensor, for example. The (1, 1, 1)-th component of the core
tensor couples the first columns of three factor matrices together. If it is not zero,
then the three columns interacts with each other. Otherwise, they have no or only
weak relations. Forcing the core tensor to be sparse can often keep strong interactions
between the factor matrices and remove the weak ones. Sparse factor matrices make the
decomposed parts more meaningful and can enhance uniqueness as explained in [25].
Sparse NTD has found a large number of applications such as in EEG classification
[8], hyperspectral data analysis [37], text mining [25], face recoginition [36], and so
on.

1.1 Related work

NTD is a highly non-convex problem, and sparse regularizers make the problem even
harder. A natural and often efficient way to solve the problem is to alternatingly
update the core tensor and factor matrices. It includes, but not limited to, alternating
least squares method (ALS) [12], column-wise coordinate descent (CCD) [23], higher-
order multiplicative update (HONMF) [25], and hierarchical alternating least squares
(HALS) [27]. ALS alternatingly updates the core tensor and factor matrices by solving
a sequence of nonnegative least squares (NLS) problems, which requires to calculate
matrix inverse and makes ALS unsuitable for large-scale problems.1 For this reason,
[12] simply restricts the core tensor to be super-diagonal in its numerical tests. CCD
has closed form update for each column of a factor matrix. However, to update the
core tensor, it still requires to solve a big NLS problem, which makes CCD unsuitable
for large-scale problems either. HONMF is an extension of the multiplicative update
method in [21] for nonnegative matrix factorization [20,26] and has a relatively low
per-iteration cost. At each iteration, it only needs some tensor-matrix multiplications

1 There appears no exact definition of “large-scale”. The concept can involve with the development of the
computing power. Here, we roughly mean there are over millions of variables or data values.

123

APG for sparse NTD 41

and component-wise divisions. The drawback of HONMF is its slow convergence,
which makes the algorithm often run a large number of iterations to reach an acceptable
data fitting. Like ALS, HALS needs to solve a sequence of NLS problems, but it updates
factor matrices in a column-wise way and the core tensor component-wisely, which
enables closed form solutions for all subproblems. In addition, HALS often converges
faster than HONMF. However, as shown in [28], the convergence speed of HALS is
still not satisfying.

There are also algorithms that update the core tensor and factor matrices simultane-
ously, such as the damped Gauss-Newton method (dGN) in [28]. It is demonstrated that
dGN overwhelmingly outperforms HONMF and HALS in terms of convergence speed.

Recently, [34] proposed an alternating proximal gradient method (APG) for solving
NCP, and it was observed superior to some other algorithms such as the alternating
direction method of multiplier (ADMM) [38] and alternating nonnegative least squares
method (ANLS) [16,17] in both speed and solution quality. Unlike ANLS that exactly
solves each subproblem, APG updates every factor matrix by solving a relaxed sub-
problem with a separable quadratic objective. Each relaxed subproblem has a closed
form solution, which makes low per-iteration cost. Using an extrapolation technique,
APG also converges very fast.

1.2 Overview of tensor

Notation. We use small letters a, x, . . . for scalars, bold small letters a, x, . . . for vec-
tors, bold capital letters A, B, . . . for matrices and bold caligraphic letters C,M, . . .

for tensors. The components of a tensor X are written in the form of xi1i2···iN , which
denotes the (i1, i2, . . . , iN)-th component of X .

Before proceeding with the model, we overview some tensor related concepts. For
more details, we refer the readers to the nice review paper [19].

– A fiber of X is a vector obtained by fixing all indices of X except one.
– The vectorization of X gives a vector, which is obtained by stacking all mode-1

fibers of X and denoted by vec(X).
– The mode-n matricization of X is a matrix denoted by X(n) whose columns are

mode-n fibers of X in the lexicographical order.
– The mode-n product of X ∈ R

I1×···×IN with A ∈ R
J×In is written as X ×n A ∈

R
I1×···×In−1×J×In+1×···×IN , defined component-wisely by

(X ×n A)i1···in−1 j in+1···iN =
In∑

in=1

xi1i2···iN a jin .

– The inner product of A,B ∈ R
I1×···×IN is 〈A,B〉 �

∑
i1,...,iN

ai1···iN bi1···iN . The

Frobenious norm of X is ‖X‖F �
√〈X ,X 〉.

– Given M ∈ R
I1×···×IN , the Tucker decomposition of M is to find a core tensor

C ∈ R
R1×···×RN with Rn ≤ In,∀n and N factor matrices An ∈ R

In×Rn , n =
1, . . . , N such that

123

42 Y. Xu

M ≈ C ×1 A1 · · · ×N AN . (1)

It is not difficult to verify that if X = C ×1 A1 · · · ×N AN , then

vec(X) = (⊗1
n=N An

)
vec(C), (2)

where
⊗1

n=N An � AN ⊗ · · · ⊗ A1, (3)

and A ⊗ B denotes the Kronecker product of A and B. In addition,

X(n) = AnC(n)

(
⊗1

i=N
i �=n

Ai

)�
. (4)

1.3 Contributions

We apply and improve the APG method proposed in [34] to the sparse NTD problem

min
C,A

F(C, A) ≡ �(C, A) + λc‖C‖1 +
N∑

n=1

λn‖An‖1,

s.t. C ∈ R
R1×···×RN+ , An ∈ R

In×Rn+ , n = 1, . . . , N ,

(5)

where R
In×Rn+ contains all In × Rn matrices with nonnegative components, A denotes

(A1, . . . , AN),

�(C, A) = 1

2
‖C ×1 A1 · · · ×N AN − M‖2

F

is a data fitting term that measures the approximation in (1), M ∈ R
I1×···×IN+ is

a given tensor, ‖C‖1 �
∑

i1,...,iN
|ci1···iN

| is used to promote the sparsity of C, and
λc, λ1, . . . , λN are parameters balancing the data fitting and sparsity level.

Our algorithm iteratively updates the core tensor C and factor matrices alternatingly
in the order of C, A1,C, A2, . . . ,C, AN . We analyze the algorithm’s per-iteration
complexity and give its global convergence. The algorithm is modified to sparse NTD
with missing values. We also consider some extensions of NTD including sparse
higher-order principal component analysis [1]. Our algorithm is carefully implemented
in MATLAB and compared to a few state-of-the-art methods for solving (sparse) NTD
from partial and/or full observations on both synthetic and real world data. Numerical
results show that the proposed algorithm makes superior performance over all the
compared ones in almost all cases.

1.4 Outline

The rest of the paper is organized as follows. Section 2 applies APG to sparse NTD
problem. The algorithm is modified for sparse NTD with missing values in Sect. 3,

123

APG for sparse NTD 43

and some extensions are considered in Sect. 4. Numerical results are shown in Sect. 5.
Finally, Sect. 6 concludes the paper.

2 Sparse nonnegative Tucker decomposition

2.1 Bound constraints for well-definedness

Note that for any positive scalars sc, s1, . . . , sN such that their product equals one,
(scC, s1A1, . . . , sN AN) does not change the value of �. Hence, if some λ’s vanish, the
corresponding variables would be unbounded such that the variables with positive λ’s
would approach to zero, and (5) may not admit a solution. To tackle this problem, if
λn = 0, we add

An ≤ max(1, ‖M‖∞) (6)

to bound An , where ‖M‖∞ denotes the maximum component of M. If λc = 0, we
add

C ≤ max(1, ‖M‖∞) (7)

to bound C. The constraints in (6) and (7) are reasonable according to the following
proposition, which is not difficult to show.

Proposition 1 If M = C̃ ×1 Ã1 · · · ×N ÃN for some (C̃, Ã1, . . . , ÃN), then there
exists some (C, A1, . . . , AN) satisfying (6) and (7) such that M = C×A1 · · ·×N AN

and (C, A1, . . . , AN) has the same sparsity as that of (C̃, Ã1, . . . , ÃN).

Remark 1 If C̃×1 Ã1 · · ·×N ÃN is not exactly equal but close to M, one can magnify
the bounds in (6) and (7) by multiplying some τ > 1.

2.2 APG for sparse NTD

For convenience, we assume all λ’s to be positive in the derivation of our algorithm,
so there are no constraints as in (6) and (7) present. Our algorithm is based on the
APG method proposed in [34]. Suppose the current iterate is (C̃, Ã). We update C by

Cnew = argminC≥0〈∇C�(Ĉ, Ã),C − Ĉ〉 + Lc

2
‖C − Ĉ‖2

F + λc‖C‖1, (8)

= max

(
0, Ĉ − 1

Lc
∇C�(Ĉ, Ã) − λc

Lc

)
, (9)

where Lc is a Lipschitz constant of ∇C�(C, Ã) with respect to C, namely,

‖∇C�(C1, Ã) − ∇C�(C2, Ã)‖F ≤ Lc‖C1 − C2‖F , ∀ C1,C2,

123

44 Y. Xu

0 5 10 15
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Running Time (sec)

R
el

at
iv

e
E

rr
or

Order: C,A
1
,...,A

N

Order: C,A
1
,C,A

2
,...,C,A

N

(a) random dataset

0 10 20 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Running Time (sec)

R
el

at
iv

e
E

rr
or

Order: C,A
1
,...,A

N

Order: C,A
1
,C,A

2
,...,C,A

N

(b) Swimmer dataset

Fig. 1 Results by APG with two different orders of updating the core tensor and factor matrices. a APG on
a Gaussian random 20 × 20 × 20 × 20 tensor Mwith core size 5 × 5 × 5 × 5; b APG on the 32 × 32 × 256
Swimmer dataset [11] with core size 24 × 20 × 20

and Ĉ is an extrapolated point. Similarly, if the current iterate is (C̃, Ã), a factor matrix
An is updated by

(An)new = argmin
An≥0

〈∇An �(C̃, Ã j<n, Ân, Ã j>n), An − Ân〉

+ Ln

2
‖An − Ân‖2

F + λn‖An‖1, (10)

= max

(
0, Ân − 1

Ln
∇An �(C̃, Ã j<n, Ân, Ã j>n) − λn

Ln

)
, (11)

where Ln is a Lipschitz constant of ∇An �(C̃, Ã j<n, An, Ã j>n) with respect to An , and
Ân is an extrapolated point.

One can perform (9) and (11) to update C and A in different manners. Directly
applying the APG method proposed in [34] leads to the order of C, A1, . . . , AN .
However, since the core tensor C interacts with all An’s, updating it more frequently
is expected to speed up the convergence of the algorithm. Hence, a more efficient way
would be to update the variables in the order of C, A1,C, A2, . . . ,C, AN . Figure 1
shows the convergence behavior of APG with two different updating orders on a
synthetic tensor and the Swimmer dataset [11]. From the figure, we see that APG
with the updating order C, A1, . . . , AN performs comparably well as that with the
order C, A1,C, A2, . . . ,C, AN on the randomly generated data. However, the former
behaves much worse than the latter on the Swimmer dataset. For this reason, we only
consider the latter one, whose pseudocode is shown in Algorithm 1.

Remark 2 We do re-update in Line ReDo to make the objective nonincreasing. The
monotonicity of the objective is important since the algorithm may perform unstably
without the re-update. The computational cost of one objective evaluation is much
cheaper than, actually not in the same order as, one gradient computation. Detailed
complexity analysis is listed in Appendix B. Moreover, in each one of our experiments,

123

APG for sparse NTD 45

Algorithm 1: Alternating proximal gradient for sparse NTD
Data: tensor M, core dimension (R1, · · · , RN), parameters λc, λ1, · · · , λN ≥ 0, and

(C−1, A−1) = (C0, A0).
for k = 1, 2, · · · do

Set Ck,−1 = Ck,0 = C0 if k = 1 and Ck,−1 = Ck−1,N−1, Ck,0 = Ck−1,N otherwise.
for n = 1, · · · , N do

Choose Lk,n
c to be a Lipschitz constant of ∇C�(C, Ak

j<n , Ak−1
j≥n) about C.

Choose ω
k,n
c ≥ 0 and set Ĉk,n = Ck,n−1 + ω

k,n
c (Ck,n−1 − Ck,n−2).

Update C by

Ck,n = max

(
0, Ĉk,n − 1

Lk,n
c

∇C�(Ĉk,n
, Ak

j<n , Ak−1
j≥n) − λc

Lk,n
c

)
; (12)

Choose Lk
n to be a Lipschitz constant of ∇An �(Ck,n , Ak

j<n , An , Ak−1
j<n) about An .

Choose ωk
n ≥ 0 and set Âk

n = Ak−1
n + ωk

n(Ak−1
n − Ak−2

n).
Update An by

Ak
n = max

(
0, Âk

n − 1

Lk
n

∇An �(Ck,n , Ak
j<n , Âk

n , Ak−1
j>n) − λn

Lk
n

)
. (13)

if F(Ck,n , Ak
j≤n , Ak−1

j>n) > F(Ck,n−1, Ak
j<n , Ak−1

j≥n) then

ReDo Re-update Ck,n and Ak
n by (12) and (13) with Ĉk,n = Ck,n−1 and Âk

n = Ak−1
n ,

respectively.

Set Ck = Ck,N .
if Some stopping conditions are satisfied then

Output (Ck , Ak
1, · · · , Ak

N) and stop.

the re-update occurs only a few times (often <10), so it needs only a little more
computations.

If some λn and/or λc vanish, we further do projections

Ck,n = min
(

max(1, ‖M‖∞),Ck,n
)

(14)

after (12) and

Ak
n = min

(
max(1, ‖M‖∞), Ak

n

)
(15)

after (13). Omitting the superscript, it is easy to show that (14) and (15) respectively
solve (8) and (10) with the extra constraints (7) and (6).

2.3 Parameter settings

In our implementation of Algorithm 1, we set

Lk,n
c = max

(
1,

∥∥∥(Ak−1
N)�Ak−1

N ⊗ · · · ⊗ (Ak−1
n)�Ak−1

n

⊗ (Ak
n−1)

�Ak
n−1 ⊗ · · · ⊗ (Ak

1)
�Ak

1

∥∥∥
)

,

123

46 Y. Xu

where ‖ · ‖ denotes matrix operator norm. Note that computing Lk,n
c does not need to

form the expensive Kronecker product because

∥∥∥A�
N AN ⊗ · · · ⊗ A�

1 A1

∥∥∥ =
N∏

i=1

∥∥∥A�
i Ai

∥∥∥ .

In the same way, we set
Lk

n = max
(
1, ‖Bk

n(Bk
n)�‖), (16)

where

Bk
n = Ck,n

(n)

(
Ak−1

N ⊗ · · · ⊗ Ak−1
n+1 ⊗ Ak

n−1 ⊗ · · · ⊗ Ak
1

)�
. (17)

In addition, we take

ωk,n
c = min

⎛

⎝ω̂k,n
c , 0.9999

√
Lk,n−1

c

Lk,n
c

⎞

⎠ , (18)

where ω̂
k,n
c follows

ω̂k,n
c = tk,n−1 − 1

tk,n
, (19a)

t1,0
c = 1, tk,0

c = tk−1,N
c , for k ≥ 2, (19b)

tk,n
c = 1

2

(
1 +

√
1 + 4(tk,n−1

c)2

)
, for k ≥ 1, n = 1, . . . , N . (19c)

In the same way,

ωk
n = min

⎛

⎝ω̂k, 0.9999

√
Lk−1

n

Lk
n

⎞

⎠ , (20)

where ω̂k follows

ω̂k = tk−1 − 1

tk
, (21a)

t0 = 1, tk = 1

2

(
1 +

√
1 + 4(tk−1)2

)
, for k ≥ 1. (21b)

Remark 3 We perform “min” operation in (18) and (20) for convergence; see The-
orem 1. The weights ω̂

k,n
c in (19) and ω̂k in (21) are the same as that used in [3]

for convex problems. Numerically, we observe that the extrapolation technique using
the weights given in (18) and (20) can significantly speed up our algorithm. We also
tested APG with the dynamically updated weight used in [22,33] for non-convex
matrix completion problem and observed that APG performs as well as that with the
above extrapolation weights.

123

APG for sparse NTD 47

2.4 Per-iteration complexity

Suppose M ∈ R
I1×...×IN and the core tensor C ∈ R

R1×...×RN . Then the per-iteration
cost of Algorithm 1 is roughly

N · O
⎛

⎝
N∑

j=1

⎛

⎝
j∏

i=1

Ri

⎞

⎠

⎛

⎝
N∏

i= j

Ii

⎞

⎠ +
N∑

j=1

⎛

⎝
j∏

i=1

Ii

⎞

⎠

⎛

⎝
N∏

i= j

Ri

⎞

⎠

⎞

⎠ . (22)

The detailed analysis is given in Appendix B.

Remark 4 If N = O(1) and maxn Rn ≤ O(log
∏N

i=1 Ii), then the per-iteration cost
of Algorithm 1 is scalable2 about the data size

∏N
i=1 Ii .

2.5 Convergence results

It is shown in [34] that the APG method with cyclic block updating rule has global con-
vergence to a stationary point. Since Algorithm 1 uses a different block updating order,
its convergence cannot be directly obtained from [34]. However, we can still obtain the
global convergence,3 which is summarized in Theorem 1. Although the proof idea for
Theorem 1 is similar to that in [34], some places need careful modifications. Hence,
for completeness, we include a modified proof in the Appendix.

Theorem 1 Let
{Wk � (Ck, Ak)

}
be the sequence generated by Algorithm 1. If

λc, λ1, . . . , λN are all positive, and

1. There exist positive constants Ld , Lu such that Lk,n
c , Lk

n ∈ [Ld , Lu];
2. There is a positive constant δω < 1 such that ω

k,n
c ≤ δω

√
Lk,n−1

c

Lk,n
c

and ωk
n ≤

δω

√
Lk−1

n
Lk

n
for all n and k, where we use the notation Lk,0

c = Lk−1,N
c ;

then Wk converges to a stationary point W̄ of (5).

Remark 5 Positivity of sparse parameters implies the boundedness of {Wk}, and thus
the existence of Ld and Lu can be guaranteed if Lk,n

c and Lk
n are taken as in Sect. 2.3.

3 Sparse nonnegative Tucker decomposition with missing values

For some applications, M may not be fully observed. This section modifies Algo-
rithm 1 to handle this case. The problem is formulated as

2 Here, by scalability, we mean the cost is no greater than s · log(s) if the data size is s.
3 Since the problem is non-convex, we only get convergence to a stationary point, and different starting
points can produce different limit points.

123

48 Y. Xu

min
C,A

FΩ(C, A) ≡ 1

2
‖PΩ(C ×1 A1 · · · ×N AN − M)‖2

F + λc‖C‖1 +
N∑

n=1

λn‖An‖1,

s.t. C ∈ R
R1×···×RN+ , An ∈ R

In×Rn+ , n = 1, . . . , N , (23)

where Ω indexes the observed entries of M, and PΩ(A) keeps the entries of A
in Ω and zeros out all others. As did in [33,35], we introduce variable X , restrict
PΩ(X) = PΩ(M), and write (23) equivalently to

min
C,A,X

1

2
‖C ×1 A1 · · · ×N AN − X‖2

F + λc‖C‖1 +
N∑

n=1

λn‖An‖1,

s.t. C ∈ R
R1×···×RN+ , An ∈ R

In×Rn+ , n = 1, . . . , N , PΩ(X) = PΩ(M). (24)

To modify Algorithm 1 for (23) or equivalently (24), we set X 0 = PΩ(M) in the
beginning. At the k-th iteration of Algorithm 1, we use M = X k−1, wherever M is
referred to.

After Line ReDo of Algorithm 1, update X by

X k = PΩ(M) + PΩc (Ck ×1 Ak
1 · · · ×N Ak

N). (25)

Compared to Algorithm 1, the modified method needs extra computation for the
update (25), which costs about 2

∑N
j=1

(∏ j
i=1 Ii

)(∏N
i= j Ri

)
. Therefore, the per-

iteration complexity of the modified algorithm is still scalable about the data size if
N = O(1) and maxn Rn ≤ O(log

∏N
i=1 Ii). In addition, following the proof of Theo-

rem 1, one can show that the same convergence result holds for the modified algorithm.

4 Extensions

For some applications, the core tensor C may not be required nonnegative [10]. Algo-
rithm 1 can be modified to handle this case by changing (12) to

Ck,n = S λc
Lk,n

c

(
Ĉk,n − 1

Lk,n
c

∇C�(Ĉk,n
, Ak

j<n, Ak−1
j≥n)

)
, (26)

where Sμ(X) is a soft-thresholding operator defined component-wisely as

Sμ(x) = sign(x) · max(0, |x | − μ).

The APG method can also be adapted to solve sparse higher-order principal com-
ponent analysis (HOPCA), which imposes orthogonality constraint on each factor
matrix. The problem is formulated as

min
C,A

1

2
‖C ×1 A1 · · · ×N AN − M‖2

F + λc‖C‖1 +
N∑

n=1

λn‖An‖1,

s.t. A�
n An = In, n = 1, . . . , N , (27)

123

APG for sparse NTD 49

where In is an identity matrix of appropriate size. When λc = 0, the optimal C =
M ×1 A�

1 · · · ×N AN , and one can eliminate C as shown in [19]. The concurrency
of sparsity and orthogonality constraints makes the problem much more difficult.
The work [1] considers rank-1 factor matrix with only one column and relaxes the
orthogonality constraint to A�

n An ≤ 1. Then it applies block coordinate minimization
method to solve the relaxed problem. When some An has more than one columns, we
relax (27) to

min
C,A

1

2
‖C ×1 A1 · · · ×N AN − M‖2

F + λc‖C‖1 +
N∑

n=1

λn‖An‖1 + μ

2

N∑

n=1

∑

i �= j

(
a�

n,i an, j

)2

s.t. ‖an, j‖2 ≤ 1, n = 1, . . . , N ,∀ j, (28)

where an, j denotes the j-th column of An ,
∑

i �= j

(
a�

n,i an, j

)2
is used to promote

the orthogonality of An , and μ is a penalty parameter. We want to mention that our
orthogonality regularization term is similar to that used in [29] for promoting the
discrepancy of dictionaries and also that used on pp. 222 of [7].

Our method for (28) is similar to Algorithm 1 and cycles over the variables by
C, A1,C, A2, . . . ,C, AN . The update of C is done by (26), and An is updated one
column by one column. Specifically, assume the current iterate is (Ck,n, Ak

i<n, Ak−1
i≥n).

Let Bk
n be the one obtained from (17). Using (36), we update the columns of An from

j = 1 to Rn by

ak
n, j = argmin‖an, j ‖2≤1

1

2

∥∥an, j b
k, j
n + (Ãk

n) j c(Bk
n) j c − M(n)

∥∥2
F + λn‖an, j‖1

+ μ

(
〈 (

Ãk
n

)

j c

(
Ãk

n

)�
j c

âk
n, j , an, j − âk

n, j

〉 + Lk
n, j

2
‖an, j − âk

n, j‖2
2

)
, (29)

where bk, j
n denotes the j-th row of Bk

n , (Bk
n) j c

is the submatrix by taking all rows of Bk
n

except the j-th one, âk
n, j = ak−1

n, j +ωk
n, j (a

k−1
n, j −ak−2

n, j) is an extrapolated point, (Ãk
n) j c

is short for
(
ak

n,1, . . . , ak
n, j−1, ak−1

n, j+1, . . . , ak−1
n,Rn

)
, and Lk

n, j is a Lipschitz constant of

the gradient of 1
2

(∑
i< j

(
a�

n, j ak
n,i

)2 + ∑
i> j

(
a�

n, j ak−1
n,i

)2
)

with respect to an, j .
One can easily write the update in (29) explicitly as

ak
n, j = PB1

[
S λn

b+μL

(
μL

b + μL
âk

n, j −
(
(Ãk

n) jc (Bk
n) jc − M(n)

)(
bk, j

n
)�

b + μL

− μ

b + μL
(Ãk

n) jc (Ãk
n)�jc âk

n, j

)]
, (30)

where b = ‖bk, j
n ‖2

2, L = Lk
n, j , and PB1 denotes the projection to unit Euclidean ball.

Following the proof of Theorem 1, one can show that the method described above
has global convergence if the parameters Lk

n, j , ωk
n, j , Lk,n

c , ω
k,n
c satisfy conditions as

those in Theorem 1. We do not repeat it here.

123

50 Y. Xu

5 Numerical experiments

In this section, we compare Algorithm 1 (APG), HONMF in [25], and HALS in [27]
for solving (sparse) NTD on both synthetic and real world data. Also, we test the
modified version of Algorithm 1 and HONMF for solving (sparse) NTD with missing
values. The code of all compared solvers is accessible online. There are of course
more other solvers for (sparse) NTD such as dGN in [28], ALS in [12], and CCD in
[23]. However, we do not get the code of dGN, and the code of CCD and ALS only
handles the case where the core tensor is fixed to identity tensor.

All the tests are performed on a laptop with an i7-620m CPU and 3GB RAM and
running 32-bit Windows 7 and MATLAB 2010b with Statistics Toolbox and Tensor
Toolbox of version 2.5 [2].

5.1 Implementation details

This subsection specifies the implementation of Algorithm 1 in details about initial-
ization and stopping criteria. Unless specified, all parameters for HONMF and HALS
are set to their default values.

5.1.1 Initialization

For all the compared algorithms, we use the same starting point. Throughout the tests,
we first randomly generate A0

1, . . . , A0
N and then process them by the Higher-order

Orthogonal Iteration algorithm in [9]. Specifically, for (5), let

B = M ×1 (A0
1)

� · · · ×n−1 (A0
n−1)

� ×n+1 (A0
n+1)

� ×N (A0
N)�, (31)

and update A0
n = max(εmachine, Un) alternatively for n = 1, . . . , N , where εmachine

stands for machine precision and Un contains the left Rn singular vectors of B(n). Then
set

C0 = M ×1 (A0
1)

� · · · ×N (A0
N)�. (32)

For (23), we use the same initialization except replacing M to PΩ(M) in (31) and
(32). It is observed that all the algorithms perform better with this kind of starting
point than a random one, in both convergence speed and chance of avoiding local
minima. The use of strictly positive initial points is mainly due to the consideration
that HONMF does not allow its iterates to have zero components.

5.1.2 Stopping criteria

We stop Algorithm 1 and its modified version in Sect. 3 if a maximum number of
iterations or maximum time is reached or one of the following conditions is satisfied

‖PΩ

(
Ck×1Ak

1···×N Ak
N −M

)
‖F

‖PΩ(M)‖F
≤ tol, for some k, (33a)

123

APG for sparse NTD 51

|Fk
Ω−Fk+1

Ω |
1+Fk

Ω

≤ tol, for three consecutive k’s, (33b)

where Fk
Ω � FΩ(Ck, Ak

1, . . . , Ak
N) and tol is a small positive value specified below.

Note that for Algorithm 1, Ω contains all indices.

5.2 Nonnegative Tucker decomposition

In this subsection, we compare APG, HONMF, and HALS on solving NTD, i.e., (5)
with all of λc, λ1, . . . , λN set to zero. We first test them on two sets of synthetic data
and then on two image datasets.

5.2.1 Synthetic data

In the first synthetic dataset, each tensor has the form M = C ×1 A1 ×2 A2 ×3
A3, where C is generated by MATLAB’s command rand(5,5,5) and each Ai by
command max(0,randn(80,5)). Then M is re-scaled to have unit maximum
component. Each tensor M in the second test is generated in the same way but has
an unbalanced dimension 10 × 10 × 1000, and the core tensor is 3 × 3 × 30. We
emphasize that uniformly random C makes the problem more difficult4 than Gaussian
random one because the former is not zero-mean. The true dimension is used in our
tests, namely, In = 50, Rn = 5,∀n is set in (5) for the first dataset and (I1, I2, I3) =
(10, 10, 1000), (R1, R2, R3) = (3, 3, 30) for the second one.

We add normalized noise to each tensor, namely, we input to each algorithm with
Mnois = M + η

‖M‖F
‖N‖F

N , where the entries of N follow i.i.d standard Gaussian
distribution. We run each algorithm to tmax (s) and compare their relative error
‖Cr×1Ar

1×2Ar
2×3Ar

3−M‖F
‖M‖F

, where (Cr , Ar
1, Ar

2, Ar
3) is a solution obtained by running

an algorithm. Table 1 shows the average relative error and number of iterations for the
three algorithms over 20 independent runs with tmax = 10 and different η’s. Figure 2
plots how the relative error changes with respect to the running time for each algorithm
with tmax = 20 and also to iterations.

From the table, we see that APG performs significantly better than HONMF and
HALS for noiseless case. When there is noise, i.e., η > 0, APG is still much better than
HONMF and comparable to HALS. From the figure, we see that HONMF converges
very slowly5 in both cases and HALS works well for M with balanced dimension but
converges slowly for the unbalanced one. APG converges faster than both HONMF
and HALS, in particular for the unbalanced case.

To see how the algorithms perform on decomposing nonnegative tensors with larger
ranks, we also test them on random tensors generated in the same way as above with
size 80 × 80 × 80 and each mode rank r , where r varies from 3 to 30 with increment

4 For the case that C is also Gaussian randomly generated, the performance of APG and HALS is similar.
5 The code of HONMF is implemented for NTD with missing value. Its running time would be reduced if
it were implemented separately for the NTD. However, we observe that HONMF converges much slower
than our algorithm.

123

52 Y. Xu

Table 1 Average results over 20 independent runs by APG, HONMF and HALS on two synthetic
datasets

Noise level APG HONMF HALS

Rel. err. # Iter Rel. err. # Iter Rel. err. # Iter

(I1, I2, I3) = (80, 80, 80), (R1, R2, R3) = (5, 5, 5)

η = 0.00 7.09e−004 467 6.06e−002 87 2.45e−003 758

η = 0.05 2.79e−003 468 6.86e−002 48 3.27e−003 732

η = 0.10 4.78e−003 466 7.15e−002 47 5.44e−003 759

(I1, I2, I3) = (10, 10, 1,000), (R1, R2, R3) = (3, 3, 30)

η = 0.00 5.12e−004 653 2.52e−002 287 2.97e−003 737

η = 0.05 1.49e−002 668 3.00e−002 232 1.50e−002 739

η = 0.10 3.02e−002 670 3.84e−002 222 3.01e−002 740

0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Running Time (sec)

R
el

at
iv

e
E

rr
or

APG
HONMF
HALS

0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Running Time (sec)

R
el

at
iv

e
E

rr
or

APG
HONMF
HALS

0 200 400 600 800 1000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations

R
el

at
iv

e
E

rr
or

APG
HONMF
HALS

0 200 400 600 800 1000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

iterations

R
el

at
iv

e
E

rr
or

APG
HONMF
HALS

Fig. 2 Convergence behavior of APG, HONMF and HALS on synthetic data. Left 80×80×80 nonnegative
tensor M and 5 × 5 × 5 core tensor C; right 10 × 10 × 1,000 nonnegative tensor M and 3 × 3 × 30 core
tensor C

3. Each algorithm runs to 1,000 iterations. Figure 3 plots the average relative errors of
10 independent runs for each algorithm. From the figure, we see that APG performs
consistently better than HONMF and HALS and much better when r is small.

123

APG for sparse NTD 53

Fig. 3 Average relative errors
of ten independent runs for
APG, HONMF, and HALS on
synthetic tensors of size
80 × 80 × 80 and with each
mode rank r

0 10 20 30
10

−8

10
−6

10
−4

10
−2

10
0

Rank

R
el

at
iv

e
E

rr
or

APG
HONMF
HALS

0 10 20 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Running Time (sec)

R
el

at
iv

e
E

rr
or

APG
HONMF
HALS

0 200 400 600
10

−3

10
−2

10
−1

10
0

Running Time (sec)

R
el

at
iv

e
E

rr
or

APG
HONMF
HALS

Fig. 4 Convergence behavior of APG, HONMF, and HALS on Swimmer dataset (left) and a brain MRI
image (right)

5.2.2 Image data

The first test uses the Swimmer dataset constructed in [11], which has 256 swimmer
images and each one has resolution of 32 × 32. We form a 32 × 32 × 256 tensor
M using the dataset and then re-scale it to have unit maximum component. The core
dimension is set to (24, 20, 20).6 We run APG, HONMF, and HALS to tmax = 30 (s)
and plot their relative errors on the left of Fig. 4. The second test uses a brain MRI
image of size 181 × 217 × 181, which has been tested in [23] for sparse nonnegative
tensor decomposition. We re-scale it to have unit maximum pixel and set the core size
to (30, 30, 30). All the three algorithms run to tmax = 600 (s), and the relative errors
are plotted on the right of Fig. 4. From the figure, we see that HONMF performs the
worst and HALS decreases the objective faster than APG in the beginning but APG
eventually converges faster. In particular for the test with Swimmer dataset, the overall

6 The mode-n ranks of M are 24, 14, and 13 for n = 1, 2, 3, respectively. Larger size is used to improve
the data fitting.

123

54 Y. Xu

Table 2 Average results by APG and HONMF on a brain MRI image with the core size R1 = R2 = R3 =
30

Time APG HONMF

Obj. Rel. err. Fac.
den.
(%)

Core
den.
(%)

Iter Obj. Rel. err. Fac.
den.
(%)

Core
den.
(%)

Iter

100 1.6622e+3 6.15e−2 32.45 7.62 185 6.2934e+3 1.77e−1 32.47 31.84 31

200 8.4659e+2 2.94e−2 23.22 14.45 370 4.7762e+3 1.48e−1 30.61 31.01 48

300 6.8898e+2 2.25e−2 20.49 16.87 555 4.0240e+3 1.30e−1 29.14 29.91 63

convergence speed of APG is much faster than that of HALS, and APG reaches much
lower relative errors while HALS seems to be trapped at some local solution.7

5.3 Sparse nonnegative Tucker decomposition

In this subsection, we compare APG and HONMF for solving sparse NTD, i.e., (5)
with at least one of λc, λ1, . . . , λN set to be positive. HALS is not coded8 for sparse
NTD. Hence, we do not include HALS for comparison.

We compare APG and HONMF on the brain MRI image used above and the
CBCL face image dataset9 which has been tested in [31] for nonnegative tensor
decomposition. For the brain MRI image, we set R1 = R2 = R3 = 30 and
λc = λ1 = λ2 = λ3 = 0.5 in (5). We run APG and HONMF to tmax = 300 (s)
and report the results at time t = 100, 200, 300 (s). Table 2 summarizes the average
results of 10 independent runs. The “core den.” is calculated by # nonzeros of Cr

303 and

“fac. den.” by
∑3

n=1 # nonzeros of Ar
n

30·(181+217+181)
. We see that APG reaches much lower objective

values and relative errors than those by HONMF. In addition, the solutions obtained
by APG are sparser than those by HONMF and are potentially easier to interpret.

The CBCL dataset has 6977 face images, and each one is 19 × 19. We use all these
images to form a 19 × 19 × 6977 nonnegative tensor M, which is then re-scaled
to have unit maximum component. The core size is set to (R1, R2, R3) = (5, 5, 50)

and the sparsity parameters to λc = 0.5, λ1 = λ2 = λ3 = 0, namely, we only want
the core tensor to be sparse. Table 3 reports the average results obtained by APG and
HONMF at running time t = 25, 50, 75, 100 (s). We see that APG reaches much lower
objective values and also lower relative errors than those by HONMF. The solutions

7 Sometimes, APG is also trapped at some local solution. We run the three algorithms on the Swimmer
dataset to maximum 30 seconds. If the relative error is below 10−3, we regard the algorithm reaches a
global solution. Among 20 independent runs, APG, HONMF, and HALS reach a global solution 11, 0, and
5 times, respectively. We also test the three algorithms with smaller rank (24,18,17), in which case APG,
HONMF, and HALS reach a global solution 16, 0, and 4 times respectively among 20 independent runs.
8 In the implementation of HALS, all factor matrices are re-scaled such that each column has unit length
after each iteration. The re-scaling is necessary for efficient update of the core tensor and does not change
the objective value of (5) if all sparsity paramenters are zero. However, it will change the objective if some
of λc, λ1, . . . , λN are positive.
9 http://www.ai.mit.edu/projects/cbcl.

123

http://www.ai.mit.edu/projects/cbcl

APG for sparse NTD 55

Table 3 Average results by APG and HONMF on CBCL dataset with the core size (R1, R2, R3) =
(5, 5, 50)

Time APG HONMF

Obj. Rel. err. Core
den.
(%)

Iter Obj. Rel. err. Core
den.
(%)

Iter

25 3.2469e+4 2.72e−1 11.45 135 5.9824e+4 3.63e−1 90.19 29

50 3.1453e+4 2.68e−1 7.56 271 5.3017e+4 3.40e−1 69.26 57

75 3.1370e+4 2.68e−1 6.78 408 4.9786e+4 3.28e−1 58.03 84

100 3.1344e+4 2.67e−1 6.46 545 4.7289e+4 3.20e−1 51.26 112

5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

dimension of core tensor

re
la

tiv
e

er
ro

r

SR = 10%
SR = 30%
SR = 50%
SR = 100%

5 10 15 20 25 30
0

20

40

60

80

100

120

140

dimension of core tensor

ru
nn

in
g

tim
e

(s
ec

)

SR = 10%
SR = 30%
SR = 50%
SR = 100%

Fig. 5 Average relative errors (left) and runnting time (right) by APG using different sample ratios

given by APG are much sparser than those by HONMF. This may be because APG
uses the constraints (6) while HONMF simply normalizes each factor matrix after
every iteration. However, it somehow validates the use of the constraints (6).

5.4 Sparse nonnegative Tucker decomposition with missing values

In this subsection, we test APG for solving (23) on synthetic data and compare it to
HONMF on the brain MRI image used above.

5.4.1 Performance of APG with different sample ratios

First, we show that APG using partial observations can achieve similar accuracies as
that using full observations. Each tensor has the form M = C ×1 A1 ×2 A2 ×3 A3
and is re-scaled to have unit maximum component, where C is generated by
MATLAB’s command max(0,randn(R,R,R)) and each factor matrix An by
max(0,randn(50,R)) with R varying among {5, 8, 11, 14, 17, 20, 23, 26}. We
choose SR = 10, 30, 50, 100 % samples uniformly at random and compare the per-
formance of APG using different SRs. The maximum number of iterations is set to
5,000 and the stopping tolerance to tol = 10−5. Figure 5 plots the average relative

123

56 Y. Xu

Table 4 Average results by APG and HONMF on a brain MRI image from different samples

Time APG HONMF

Obj. Rel. err. Fac.
den.
(%)

Core
den.
(%)

Iter Obj. Rel. err. Fac.
den.
(%)

Core
den.
(%)

Iter

SR = 10 %

150 1.3418e+3 2.32e−1 30.49 0.72 208 1.5608e+4 1.00e+0 0.00 0.00 67

300 9.3130e+2 1.80e−1 17.03 0.88 416 1.5608e+4 1.00e+0 0.00 0.00 150

450 7.9761e+2 1.60e−1 14.28 1.23 623 1.5608e+4 1.00e+0 0.00 0.00 232

600 7.4748e+2 1.53e−1 13.60 1.40 831 1.5608e+4 1.00e+0 0.00 0.00 315

SR = 30 %

150 1.5808e+3 1.27e−1 35.15 2.31 191 2.4525e+3 1.88e−1 31.80 41.87 40

300 9.0284e+2 8.17e−2 19.65 4.38 384 1.9277e+3 1.58e−1 28.90 38.48 67

450 7.0151e+2 6.25e−2 17.29 6.34 576 1.6362e+3 1.38e−1 26.44 33.07 96

600 6.2076e+2 5.34e−2 15.69 7.60 769 1.4587e+3 1.25e−1 24.54 30.12 129

SR = 50 %

150 1.8767e+3 1.08e−1 35.03 3.64 184 3.7494e+3 1.91e−1 31.75 36.66 40

300 9.5363e+2 5.88e−2 22.42 7.55 367 2.8367e+3 1.59e−1 28.70 40.15 64

450 7.0877e+2 4.03e−2 19.29 10.74 550 2.3369e+3 1.37e−1 26.48 42.33 92

600 6.2737e+2 3.32e−2 17.75 12.41 733 2.0265e+3 1.23e−1 24.96 42.58 124

errors and running time (s) of APG over 20 independent trials. We see that APG using
30 and 50 % samples gives similar accuracies as that using full observations. APG
with 10 % samples can still make relative errors low to about 1 % as R ≤ 14, but
10 % samples seem not enough when R ≥ 17. Longer time by APG with partial
observations is due to the extra update (25) and more iterations. When R ≥ 17, the
running time of APG with 10 % samples decreases because it stops earlier.

5.4.2 Comparison with HONMF

Secondly, we compare APG to HONMF10 on the brain MRI image used above. The
core dimension is set to R1 = R2 = R3 = 30 and sparsity parameters to λc = λ1 =
λ2 = λ3 = 0.5. We compare the two algorithms using SR = 10, 30, 50 % uniformly
randomly chosen samples and run them to tmax = 600 (s). Table 4 shows the average
results at time t = 150, 300, 450, 600 for different SRs over 5 independent trials.
From the table, we see that HONMF fails with 10 % samples while APG can still
work reasonably. In all cases, APG performs better than HONMF in both accuracy
and speed. The solutions given by APG are sparser than those by HONMF for SR = 30,
50 %.

10 Although HONMF converges very slowly, it is the only one we can find that is also coded for sparse
nonnegative Tucker decomposition with missing values.

123

APG for sparse NTD 57

Original A APG’s A

0 2 4

0

5

10

15

20

25

30

35

40

45

50

nz = 50

A1

0 2 4

0

5

10

15

20

25

30

35

40

45

50

nz = 50

A2

0 2 4

0

5

10

15

20

25

30

35

40

45

50

nz = 50

A3

0 2 4

0

5

10

15

20

25

30

35

40

45

50

nz = 53

A1

0 2 4

0

5

10

15

20

25

30

35

40

45

50

nz = 54

A2

0 2 4

0

5

10

15

20

25

30

35

40

45

50

nz = 50

A3 Original C

0 1 2 3 4

0
0.5

1
1.5

2
2.5

3
3.5

4

nz = 4
0 1 2 3 4

0
0.5

1
1.5

2
2.5

3
3.5

4

nz = 2
0 1 2 3 4

0
0.5

1
1.5

2
2.5

3
3.5

4

nz = 5

APG’s C

0 1 2 3 4

0
0.5

1
1.5

2
2.5

3
3.5

4

nz = 4
0 1 2 3 4

0
0.5

1
1.5

2
2.5

3
3.5

4

nz = 2
0 1 2 3 4

0
0.5

1
1.5

2
2.5

3
3.5

4

nz = 5

Fig. 6 Sparsity pattern of the orginal C and A and those given by APG method

5.5 Sparse higher-order principal component analysis

We use a simple test with synthetic data to show that (28) can be better than unregular-
ized HOPCA that sets all of λc, λ1, . . . , λN to zero in (27). We use the APG method
described in Sect. 4 for (28) and HOOI [9] for the unregularized HOPCA. We set

Lk
n, j = ‖(Ãk

n) j c(Ãk
n)�j c‖ in (30) and ωk

n, j in the same way as in (20).

We generate a 50 ×50 ×50 tensor in the form of M = C ×1 A1 ×2 A2 ×A3 +N .
Here, C is 3 × 3 × 3, and each element is drawn from standard Gaussian distribution.
Then 60 % components of C are selected uniformly at random and set to zero. Factor
matrices have sparsity patterns shown in Fig. 6, and each non-zero element is drawn
from standard Gaussian distribution. Then each column is normalized. N is Gaussian
random noise and makes the signal-to-noise-ratio SNR = 60. The sparsity parameters
are set to λc = λ1 = λ2 = λ3 = 0.02, and orthogonality parameter is tuned to
μ = 0.1 in (28). The sparsity patterns of the original C and A and those11 given
by APG are plotted in Fig. 6. We see that the solution given by APG have almost the
same sparsity pattern as the original ones. To see how close to orthogonality each factor
matrix is given by APG, we first normalize each column of the factor matrices and
then calculate ‖A�

n An −I‖F/‖I‖F , which are 2.95×10−3, 1.36×10−3, 7.24×10−5,
respectively for n = 1, 2, 3. Hence, they are almost orthogonal. Although the solution
by HOOI makes a relatively higher data fitting, it is highly dense with no zero element.
Therefore, the relaxed model (28) can potentially give better solution than (27) for
some applications such as classification.

6 Conclusions

Sparse NTD aims at decomposing a tensor into the product of a core tensor and several
factor matrices with nonnegativity and sparsity constraints. Existing algorithms for

11 We permute the columns of the factor matrices and do permutations to the core tensor accordingly.

123

58 Y. Xu

this problem either converge rapidly with very expensive per-iteration cost or have
low per-iteration cost with very slow convergence speed. We have proposed the APG
method, which owns both low per-iteration complexity and fast convergence speed.
Moreover, the algorithm has been modified for sparse NTD from partial observations
of a target tensor. The modified algorithm also has low per-iteration cost and can give
similar decompositions from half of or even fewer observations as those from full
observations.

Acknowledgments This work is partly supported by ARL and ARO grant W911NF-09-1-0383 and
AFOSR FA9550-10-C-0108. The author would like to thank three anonymous referees, the technical editor
and the associate editor for their very valuable comments and suggestions. Also, the author would like to
thank Prof. Wotao Yin for his valuable discussions and Anh Huy Phan for sharing the code of HALS.

7 Appendix A: Efficient computation

The most expensive step in Algorithm 1 is the computation of ∇C�(C, A) and
∇An �(C, A) in (12) and (13), respectively. Note that we have omitted the superscript.
Next, we discuss how to efficiently compute them.

7.1 Computation of ∇C�

According to (2), we have

�(C, A) = 1

2

∥∥(⊗1
n=N An

)
vec(C) − vec(M)

∥∥2
2.

Using the properties of Kronecker product (see [14], for example), we have

vec
(∇C�(C, A)

) = (⊗1
n=N A�

n An
)
vec(C) − (⊗1

n=N A�
n

)
vec(M). (34)

It is extremely expensive to explicitly reformulate the Kronecker products in (34).
Fortunately, we can use (2) again to have

(⊗1
n=N A�

n An
)
vec(C) = vec

(C ×1 A�
1 A1 · · · ×N A�

N AN
)

and

(⊗1
n=N A�

n

)
vec(M) = vec

(M ×1 A�
1 · · · ×N A�

N

)
.

Hence, we have from (34) and the above two equalities that

∇C�(C, A) = C ×1 A�
1 A1 · · · ×N A�

N AN − M ×1 A�
1 · · · ×N A�

N . (35)

123

APG for sparse NTD 59

7.2 Computation of ∇An �

According to (4), we have

�(C, A) = 1

2

∥∥AnC(n)

(
⊗1

i=N
i �=n

Ai

)�
− M(n)

∥∥2
F . (36)

Hence,
∇An �(C, A) = An(BnB�

n) − M(n)B�
n (37)

where

Bn = C(n)

(
⊗1

i=N
i �=n

Ai

)�
. (38)

Similar to what has been done to (34), we do not explicitly reformulate the Kronecker
product in (38) but let

X = C ×1 A1 · · · ×n−1 An−1 ×n+1 An+1 · · · ×N AN . (39)

Then we have Bn = X(n) according to (4).

8 Appendix B: Complexity analysis of Algorithm 1

Through (35), the computation of ∇C�(C, A) requires

C

⎛

⎝
N∑

j=1

R2
j I j +

N∑

j=1

R j

N∏

i=1

Ri +
N∑

j=1

⎛

⎝
j∏

i=1

Ri

⎞

⎠

⎛

⎝
N∏

i= j

Ii

⎞

⎠

⎞

⎠ (40)

flops, where C ≈ 2, the first part comes from the computation of all A�
i Ai ’s, and the

second and third parts are respectively from the computations of the first and second
terms in (35). Disregarding12 the time for unfolding a tensor and using (37), we have
the cost for ∇An �(C, A) to be

12 In tensor-matrix multiplications, unfolding and folding a tensor both happens, and they can take about
a half of time in the whole process of tensor-matrix multiplication. The readers can refer to [30] for issues
about the cost of tensor unfolding and permutation.

123

60 Y. Xu

C

⎛

⎜⎜⎜⎜⎜⎜⎝

n−1∑

j=1

⎛

⎝
j∏

i=1

Ii

⎞

⎠

⎛

⎝
N∏

i= j

Ri

⎞

⎠ + Rn

⎛

⎝
n−1∏

i=1

Ii

⎞

⎠
N∑

j=n+1

⎛

⎝
j∏

i=n+1

Ii

⎞

⎠

⎛

⎝
N∏

i= j

Ri

⎞

⎠

︸ ︷︷ ︸
part 1

+R2
n

∏

i �=n

Ii + R2
n In

︸ ︷︷ ︸
part 2

+ Rn

N∏

i=1

Ii

︸ ︷︷ ︸
part 3

⎞

⎟⎟⎟⎟⎟⎟⎠
, (41)

where C is the same as that in (40), “part 1” is for the computation of Bn via (39),
“part 2” and “part 3” are respectively from the computations of the first and second
terms in (37).

Suppose Ri < Ii for all i = 1, . . . , N . Then the quantity of (40) is dominated by
the third part because in this case,

R2
j I j <

⎛

⎝
j∏

i=1

Ri

⎞

⎠

⎛

⎝
N∏

i= j

Ii

⎞

⎠ , R j

N∏

i=1

Ri <

⎛

⎝
j∏

i=1

Ri

⎞

⎠

⎛

⎝
N∏

i= j

Ii

⎞

⎠ .

The quantity of (41) is dominated by the first and third parts. Only taking account of the
dominating terms, we claim that the quantities of (40) and (41) are similar. To see this,
assume Ri = R, Ii = I, for all i’s. Then the third part of (40) is

∑N
j=1 R j I N− j+1,

and the sum of the first and third parts of (41) is

n−1∑

j=1

⎛

⎝
j∏

i=1

Ii

⎞

⎠

⎛

⎝
N∏

i= j

Ri

⎞

⎠ + Rn

(
n−1∏

i=1

Ii

)
N∑

j=n+1

⎛

⎝
j∏

i=n+1

Ii

⎞

⎠

⎛

⎝
N∏

i= j

Ri

⎞

⎠ + Rn

N∏

i=1

Ii

=
n−1∑

j=1

I j RN− j+1 +
N∑

j=n+1

I j−1 RN− j+2 + RI N

=
N∑

j=N−n+2

R j I N− j+1 +
N−n+1∑

j=2

R j I N− j+1 + RI N

=
N∑

j=1

R j I N− j+1.

Hence, the costs for computing ∇C�(C, A) and ∇An �(C, A) are similar.
After obtaining the partial gradients ∇C�(C, A) and ∇An �(C, A), it remains to do

some projections to nonnegative orthant to finish the updates in (12) and (13), and
the cost is proportional to the size of C and An , i.e., C p

∏N
i=1 Ri and C p In Rn with

C p ≈ 4. The data fitting term can be evaluated by

�(C, A) = 1

2

(
〈A�

n An, BnB�
n 〉 − 2〈An, M(n)B�

n 〉 + ‖M‖2
F

)
,

123

APG for sparse NTD 61

where Bn is defined in (38). Note that A�
n An , BnB�

n and M(n)B�
n have been obtained

during the computation of ∇C�(C, A) and ∇An �(C, A), and ‖M‖2
F can be pre-

computed before running the algorithm. Hence, we need C(R2
n + In Rn) additional

flops to evaluate �(C, A), where C ≈ 2. To get the objective value, we need
C(

∏N
i=1 Ri + ∑N

i=1 Ii Ri) more flops for the regularization terms.
Some more computations occur in choosing Lipschitz constants Lc and Ln’s. When

Rn � In for all n, the cost for computing Lipschitz constants, projection to nonneg-
ative orthant and objective evaluation is negligible compared to that for computing
partial gradients ∇C�(C, A) and ∇An �(C, A). Omitting the negligible cost and only
accounting the main cost in (40) and (41), the per-iteration complexity of Algorithm 1
is

N · O
⎛

⎝
N∑

j=1

⎛

⎝
j∏

i=1

Ri

⎞

⎠

⎛

⎝
N∏

i= j

Ii

⎞

⎠ +
N∑

j=1

⎛

⎝
j∏

i=1

Ii

⎞

⎠

⎛

⎝
N∏

i= j

Ri

⎞

⎠

⎞

⎠ . (42)

9 Appendix C: Proof of Theorem 1

9.1 Subsequence convergence

First, we give a subsequence convergence result, namely, any limit point of {Wk} is
a stationary point. Using Lemma 2.1 of [34], we have

F(Ck,n−1, Ak
j<n, Ak−1

j≥n) − F(Ck,n, Ak
j<n, Ak−1

j≥n)

≥ Lk,n
c

2
‖Ĉk,n − Ck,n‖2

F + Lk,n
c

〈
Ĉk,n − Ck,n−1,Ck,n − Ĉk,n

〉

= Lk,n
c

2
‖Ck,n−1 − Ck,n‖2

F − Lk,n
c

2
(ωk,n

c)2‖Ck,n−2 − Ck,n−1‖2
F (43)

≥ Lk,n
c

2
‖Ck,n−1 − Ck,n‖2

F − Lk,n−1
c

2
δ2
ω‖Ck,n−2 − Ck,n−1‖2

F , (44)

where we have used ω
k,n
c ≤ δω

√
Lk,n−1

c

Lk,n
c

to get the last inequality. Note that if the

re-update in Line ReDo is performed, then ω
k,n
c = 0 in (43), and (44) still holds.

Similarly, we have

F(Ck,n, Ak
j<n, Ak−1

j≥n) − F(Ck,n, Ak
j≤n, Ak−1

j>n)

≥ Lk
n

2 ‖Ak−1
n − Ak

n‖2
F − Lk−1

n
2 δ2

ω‖Ak−2
n − Ak−1

n ‖2
F .

(45)

Summing (44) and (45) together over n and noting Ck,−1 = Ck−1,N−1,Ck,0 = Ck−1,N

yield

F(Wk−1) − F(Wk)

≥
N∑

n=1

(
Lk,n

c

2
‖Ck,n−1 − Ck,n‖2

F − Lk,n−1
c

2
δ2
ω‖Ck,n−2 − Ck,n−1‖2

F

123

62 Y. Xu

+ Lk
n

2
‖Ak−1

n − Ak
n‖2

F − Lk−1
n

2
δ2
ω‖Ak−2

n − Ak−1
n ‖2

F

)

= Lk,N
c

2
‖Ck,N−1 − Ck,N ‖2

F − Lk−1,N
c

2
δ2
ω‖Ck−1,N−1 − Ck−1,N ‖2

F

+
N−1∑

n=1

(1 − δ2
ω)Lk,n

c

2
‖Ck,n−1 − Ck,n‖2

F

+
N∑

n=1

(
Lk

n
2

‖Ak−1
n − Ak

n‖2
F − Lk−1

n

2
δ2
ω‖Ak−2

n − Ak−1
n ‖2

F

)
. (46)

Summing (46) over k, we have

F(W0) − F(WK)

≥
K∑

k=1

N∑

n=1

(
(1 − δ2

ω)Lk,n
c

2
‖Ck,n−1 − Ck,n‖2

F + (1 − δ2
ω)Lk

n

2
‖Ak−1

n − Ak
n‖2

F

)

≥ (1 − δ2
ω)Ld

2

K∑

k=1

N∑

n=1

(
‖Ck,n−1 − Ck,n‖2

F + ‖Ak−1
n − Ak

n‖2
F

)
. (47)

Letting K → ∞ and observing F is lower bounded, we have

∞∑

k=1

N∑

n=1

(
‖Ck,n−1 − Ck,n‖2

F + ‖Ak−1
n − Ak

n‖2
F

)
< ∞. (48)

Suppose W̄ = (C̄, Ā1, . . . , ĀN) is a limit point of {Wk}. Then there is a subse-
quence {Wk′ } converging to W̄ . Since {Lk,n

c , Lk
n} is bounded, passing another sub-

sequence if necessary, we assume Lk′,n
c → L̄n

c and Lk′
n → L̄n . Note that (48) implies

Ak′−1 → Ā and Cm,n → C̄ for all n and m = k′, k′ − 1, k′ − 2, as k → ∞. Hence,

Ĉk′,n → C̄ for all n, as k → ∞. Recall that

Ck′,n = argmin
C≥0

〈
∇C�(Ĉk′,n

, Ak′
j<n, Ak′−1

j≥n),C − Ĉk′,n
〉

+ Lk′,n
c

2
‖C − Ĉk′,n‖2

F + λc‖C‖1. (49)

Letting k → ∞ and using the continuity of the objective in (49) give

C̄ = argminC≥0
〈∇C�(C̄, Ā),C − C̄〉 + L̄n

c

2
‖C − C̄‖2

F + λc‖C‖1.

Hence, C̄ satisfies the first-order optimality condition

〈∇C�(C̄, Ā) + λcPc,C − C̄〉 ≥ 0, for all C ≥ 0, some Pc ∈ ∂‖C̄‖1. (50)

123

APG for sparse NTD 63

Similarly, we have for all n that

〈∇An �(C̄, Ā) + λnPn, An − Ān
〉 ≥ 0, for all An ≥ 0, some Pn ∈ ∂‖Ān‖1. (51)

Note (50) together with (51) gives the first-order optimality conditions of (5). Hence,
W̄ is a stationary point.

9.2 Global convergence

Next we show the entire sequence {Wk} converges to a limit point W̄ . Since all
λc, λ1, . . . , λN are positive, the sequence {Wk} is bounded and admits a finite limit

point W̄ . Let E = {W : ‖W‖F ≤ 4ν}, where ‖W‖F �
√

‖C‖2
F + ‖A‖2

F and ν is

a constant such that ‖(Ck,n, Ak)‖F ≤ ν for all k, n. Let LG be a uniform Lipschitz
constant of ∇C�(W) and ∇An �(W), n = 1, . . . , N , over E , namely,

‖∇C�(Y) − ∇C�(Z)‖F ≤LG‖Y − Z‖F , ∀Y,Z ∈ E, (52a)

‖∇An �(Y) − ∇An �(Z)‖F ≤LG‖Y − Z‖F , ∀ Y,Z ∈ E, ∀n, (52b)

Let

H(C, A) = �(C, A) + λc‖C‖1 + δ+(C) +
N∑

n=1

(
λn‖An‖1 + δ+(An)

)

and
rc(C) = λc‖C‖1 + δ+(C), rn(An) = λn‖An‖1 + δ+(An), n = 1, . . . , N ,

where δ+(·) is the indicator function on nonnegative orthant, namely, it equals zero if
the argument is component-wise nonnegative and +∞ otherwise.

Note that (5) is equivalent to

min
C,A

H(C, A). (53)

Recall that H satisfies the KL property (see [4,24] for example) at W̄ , namely, there
exist γ, ρ > 0, θ ∈ [0, 1), and a neighborhood B(W̄, ρ) � {W : ‖W − W̄‖F ≤ ρ}
such that

|H(W) − H(W̄)|θ ≤ γ · dist(0, ∂ H(W)), for all W ∈ B(W̄, ρ). (54)

Denote Hk = H(Wk) − H(W̄). Then Hk ↓ 0. Since W̄ is a limit point of {Wk}
and ‖Ak −Ak+1‖F → 0, ‖Ck,n−1 −Ck,n‖F → 0 for all k, n from (48), for any T > 0,
there must exist k0 such that W j ∈ B(W̄, ρ), j = k0, k0 + 1, k0 + 2 and

T
(
H1−θ

k0
+ ‖Ak0 − Ak0+1‖F + ‖Ak0+1 − Ak0+2‖F + ‖Ck0+2,N−1 − Ck0+2,N ‖F

)

+ ‖Wk0+2 − W̄‖F < ρ.

123

64 Y. Xu

Take T as specified in (66) and consider the sequence {Wk}k≥k0 , which is equivalent
to starting the algorithm from Wk0 and, thus without loss of generality, let k0 = 0,
namely, W j ∈ B(W̄, ρ), j = 0, 1, 2, and

T
(
H1−θ

0 +‖A0 − A1‖F +‖A1 − A2‖F +‖C2,N−1 −C2,N ‖F
)+‖W2 −W̄‖F < ρ.

(55)
The idea of our proof is to show

Wk ∈ B(W̄, ρ), for all k, (56)

and employ the KL inequality (54) to show {Wk} is a Cauchy sequence, thus the
entire sequence converges. Assume Wk ∈ B(W̄, ρ) for 0 ≤ k ≤ K . We go to show
WK+1 ∈ B(W̄, ρ) and conclude (56) by induction.

Note that

∂ H(Wk) =
{
∂r1(Ak

1) + ∇A1�(Wk)
}

× · · · ×
{
∂rN (Ak

N) + ∇AN �(Wk)
}

×
{
∂rc(Ck,N) + ∇C�(Wk)

}
,

and for all n and k

− Lk
n(A

k
n − Âk

n) − ∇An �(Ck,n, Ak
j<n, Âk

n, Ak−1
j≥n) + ∇An �(Wk)

∈ ∂rn(Ak
n) + ∇An �(Wk),

− Lk,N
c (Ck,N − Ĉk,N

) − ∇C�(Ĉk,N
, Ak

j<N , Ak−1
N) + ∇C�(Wk)

∈ ∂rc(Ck,N) + ∇C�(Wk).

Hence, for all k ≤ K ,

dist
(
0, ∂ H(Wk)

)

≤ ∥∥(Lk
1(Ak

1 − Âk
1), . . . , Lk

1(Ak
1 − Âk

1), Lk,n
c (Ck,N − Ĉk,N

))
∥∥

F

+
N∑

n=1

∥∥∇An �(Ck,n , Ak
j<n , Âk

n , Ak−1
j≥n) − ∇An �(Wk)

∥∥
F

+ ∥∥∇C�(Ĉk,N
, Ak

j<N , Ak−1
N) − ∇C�(Wk)

∥∥
F

≤ Lu
(‖Ak − Ak−1‖F + ‖Ak−1 − Ak−2‖F

) + Lu
(‖Ck,N − Ck,N−1‖F + ‖Ck,N−1 − Ck,N−2‖F

)

+
N∑

n=1

LG
(‖Ck,n − Ck,N ‖F + ‖Ak − Ak−1‖F + ‖Ak−1 − Ak−2‖F

)

+ LG
(‖Ck,N − Ck,N−1‖F + ‖Ck,N−1 − Ck,N−2‖F + ‖Ak − Ak−1‖F

)

≤ (
Lu + (N + 1)LG

)
⎛

⎝‖Ak − Ak−1‖F + ‖Ak−1 − Ak−2‖F

+‖Ck,N − Ck,N−1‖F +
N−1∑

n=1

‖Ck,n−1 − Ck,n‖F

⎞

⎠ , (57)

123

APG for sparse NTD 65

where we have used Lk
n, Lk,n

c ≤ Lu, ∀k, n and (52) to have the second inequality,
and the third inequality is obtained from ‖Ck,n − Ck,N ‖F ≤ ∑N−1

i=n ‖Ck,i − Ck,i+1‖F

and doing some simplification. Using the KL inequality (54) at W = Wk and the
inequality

sθ

1 − θ
(s1−θ − t1−θ) ≥ s − t, ∀s, t ≥ 0,

we get
γ

1 − θ
dist(0, ∂ H(Wk))(H1−θ

k − H1−θ
k+1) ≥ Hk − Hk+1. (58)

By (46), we have

Hk − Hk+1 ≥ Lk+1,N
c

2
‖Ck+1,N−1 − Ck+1,N ‖2

F − Lk,N
c

2
δ2
ω‖Ck,N−1 − Ck,N ‖2

F

+
N−1∑

n=1

(1 − δ2
ω)Lk+1,n

c

2
‖Ck+1,n−1 − Ck+1,n‖2

F

+
N∑

n=1

(
Lk+1

n

2
‖Ak

n − Ak+1
n ‖2

F − Lk
n

2
δ2
ω‖Ak−1

n − Ak
n‖2

F

)
. (59)

Combining (57), (58), (59) and noting Lk+1,n
c ≥ Ld yield

γ (Lu + (N + 1)LG)

1 − θ
(H1−θ

k − H1−θ
k+1)

[‖Ak − Ak−1‖F + ‖Ak−1 − Ak−2‖F

+ ‖Ck,N − Ck,N−1‖F +
N−1∑

n=1

‖Ck,n−1 − Ck,n‖F
]

+ δ2
ω

∥∥∥∥

(√
Lk

1Ak−1
1 , . . . ,

√
Lk

N Ak−1
N ,

√
Lk,N

c Ck,N−1
)

−
(√

Lk
1Ak

1, . . . ,

√
Lk

N Ak
N ,

√
Lk,N

c Ck,N
)∥∥∥∥

2

F

≥
∥∥∥∥

(√
Lk+1

1 Ak
1, . . . ,

√
Lk+1

N Ak
N ,

√
Lk+1,N

c Ck+1,N−1
)

−
(√

Lk+1
1 Ak+1

1 , . . . ,

√
Lk+1

N Ak+1
N ,

√
Lk+1,N

c Ck+1,N
)∥∥∥∥

2

F

+ (1 − δ2
ω)Ld

2

N−1∑

n=1

‖Ck+1,n−1 − Ck+1,n‖2
F . (60)

123

66 Y. Xu

By Cauchy-Schwart inequality, we estimate
√

right side of inequality (60)

≥ 1 + δω

2

∥∥∥∥

(√
Lk+1

1 Ak
1, . . . ,

√
Lk+1

N Ak
N ,

√
Lk+1,N

c Ck+1,N−1
)

−
(√

Lk+1
1 Ak+1

1 , . . . ,

√
Lk+1

N Ak+1
N ,

√
Lk+1,N

c Ck+1,N
)∥∥∥∥

F

+ η

N−1∑

n=1

‖Ck+1,n−1 − Ck+1,n‖F , (61)

where η > 0 is sufficiently small and depends on δω, Ld , N , and

√
left side of inequality (60)

≤ μγ (Lu + (N + 1)LG)

4(1 − θ)
(H1−θ

k − H1−θ
k+1)

+ 1

μ

[‖Ak − Ak−1‖F + ‖Ak−1 − Ak−2‖F + ‖Ck,N − Ck,N−1‖F

+
N−1∑

n=1

‖Ck,n−1 − Ck,n‖F
]

+ δω

∥∥∥∥

(√
Lk

1Ak−1
1 , . . . ,

√
Lk

N Ak−1
N ,

√
Lk,N

c Ck,N−1
)

−
(√

Lk
1Ak

1, . . . ,

√
Lk

N Ak
N ,

√
Lk,N

c Ck,N
)∥∥∥∥

F
, (62)

where μ > 0 is a sufficiently large constant such that 1
μ

< min(η, 1−δω

4

√
Ld
2). Com-

bining (60),(62), (61) and summing them over k from 2 to K give

μγ (Lu + (N + 1)LG)

4(1 − θ)
(H1−θ

2 − H1−θ
K+1)

+ 1

μ

K∑

k=2

[‖Ak − Ak−1‖F + ‖Ak−1 − Ak−2‖F + ‖Ck,N − Ck,N−1‖F

+
N−1∑

n=1

‖Ck,n−1 − Ck,n‖F
]

+ δω

K∑

k=2

∥∥∥∥

(√
Lk

1Ak−1
1 , . . . ,

√
Lk

N Ak−1
N ,

√
Lk,N

c Ck,N−1
)

−
(√

Lk
1Ak

1, . . . ,

√
Lk

N Ak
N ,

√
Lk,N

c Ck,N
)∥∥∥∥

F

≥ 1 + δω

2

K∑

k=2

∥∥∥∥

(√
Lk+1

1 Ak
1, . . . ,

√
Lk+1

N Ak
N ,

√
Lk+1,N

c Ck+1,N−1
)

123

APG for sparse NTD 67

−
(√

Lk+1
1 Ak+1

1 , . . . ,

√
Lk+1

N Ak+1
N ,

√
Lk+1,N

c Ck+1,N
)∥∥∥∥

F

+ η

K∑

k=2

N−1∑

n=1

‖Ck+1,n−1 − Ck+1,n‖F .

Simplifying the above inequality, we have

μγ (Lu + (N + 1)LG)

4(1 − θ)
(H1−θ

2 − H1−θ
K+1)

+ 1

μ

K∑

k=2

(
‖Ak − Ak−1‖F + ‖Ak−1 − Ak−2‖F + ‖Ck,N − Ck,N−1‖F

)

+ δω

∥∥
(√

L2
1A1

1, . . . ,

√
L2

N A1
N ,

√
L2,N

c C2,N−1
)

−
(√

L2
1A2

1, . . . ,

√
L2

N A2
N ,

√
L2,N

c C2,N
)∥∥

F

≥ 1 + δω

2

∥∥∥∥

(√
L K+1

1 AK
1 , . . . ,

√
L K+1

N AK
N ,

√
L K+1,N

c CK+1,N−1
)

−
(√

L K+1
1 AK+1

1 , . . . ,

√
L K+1

N AK+1
N ,

√
L K+1,N

c CK+1,N
)∥∥∥∥

F

+ 1 − δω

2

K−1∑

k=2

∥∥∥∥

(√
Lk+1

1 Ak
1, . . . ,

√
Lk+1

N Ak
N ,

√
Lk+1,N

c Ck+1,N−1
)

−
(√

Lk+1
1 Ak+1

1 , . . . ,

√
Lk+1

N Ak+1
N ,

√
Lk+1,N

c Ck+1,N
)∥∥∥∥

F

+ (η − 1

μ
)

K∑

k=2

N−1∑

n=1

‖Ck+1,n−1 − Ck+1,n‖F . (63)

Note that

∥∥∥∥

(√
Lk+1

1 Ak
1, . . . ,

√
Lk+1

N Ak
N ,

√
Lk+1,N

c Ck+1,N−1
)

−
(√

Lk+1
1 Ak+1

1 , . . . ,

√
Lk+1

N Ak+1
N ,

√
Lk+1,N

c Ck+1,N
)∥∥∥∥

2

F

=
N∑

n=1

Lk+1
n ‖Ak

n − Ak+1
n ‖2

F + Lk+1,N
c ‖Ck+1,N−1 − Ck+1,N ‖2

F

≥ Ld(‖Ak − Ak+1‖2
F + ‖Ck+1,N−1 − Ck+1,N ‖2

F

≥ Ld

2

(
‖Ak − Ak+1‖F + ‖Ck+1,N−1 − Ck+1,N ‖F

)2
(64)

123

68 Y. Xu

Plugging (64) to inequality (63) gives

μγ (Lu + (N + 1)LG)

4(1 − θ)

(
H1−θ

2 − H1−θ
K+1

)

+ 1

μ

K∑

k=2

(
‖Ak − Ak−1‖F + ‖Ak−1 − Ak−2‖F + ‖Ck,N − Ck,N−1‖F

)

+ δω‖(
√

L2
1A1

1, . . . ,

√
L2

N A1
N ,

√
L2,N

c C2,N−1)

−
(√

L2
1A2

1, . . . ,

√
L2

N A2
N ,

√
L2,N

c C2,N
)

‖F

≥ 1 + δω

2

√
Ld

2

(
‖AK − AK+1‖F + ‖CK+1,N−1 − CK+1,N ‖F

)

+ 1 − δω

2

√
Ld

2

K−1∑

k=2

(
‖Ak − Ak+1‖F + ‖Ck+1,N−1 − Ck+1,N ‖F

)

+
(

η − 1

μ

) K∑

k=2

N−1∑

n=1

‖Ck+1,n−1 − Ck+1,n‖F ,

which implies by noting H0 ≥ Hk ≥ 0, Ck+1,0 = Ck,N and Lk
n, Lk,n

c ≤ Lu, ∀k, n
that

μγ (Lu + (N + 1)LG)

4(1 − θ)
H1−θ

0

+ 1

μ

(
2‖A1 − A2‖F + ‖A0 − A1‖F + ‖C2,N − C2,N−1‖F

)

+ δω

√
Lu

(‖A1 − A2‖F + ‖C2,N−1 − C2,N ‖F
)

≥ 1 + δω

2

√
Ld

2

(‖AK − AK+1‖F + ‖CK+1,N−1 − CK+1,N ‖F
)

+
(

1 − δω

2

√
Ld

2
− 2

μ

)
K−1∑

k=2

(‖Ak − Ak+1‖F + ‖Ck+1,N−1 − Ck+1,N ‖F
)

+
(

η − 1

μ

) K∑

k=2

‖Ck,N − Ck+1,N−1‖F ,

≥ τ
(‖AK − AK+1‖F + ‖CK ,N − CK+1,N ‖F

)

+ τ

K−1∑

k=2

(‖Ak − Ak+1‖F + ‖Ck,N − Ck+1,N ‖F
)
, (65)

where τ = min

(
1−δω

2

√
Ld
2 − 2

μ
, η − 1

μ

)
. Let

123

APG for sparse NTD 69

T = max

(
μγ (Lu + (N + 1)LG)

4τ(1 − θ)
,

1

2μτ
+ δω

τ

√
Lu

)
. (66)

Then (65) implies

T
(
H1−θ

0 + ‖A0 − A1‖F + ‖A1 − A2‖F + ‖C2,N−1 − C2,N ‖F
)

≥ ‖WK − WK+1‖F +
K−1∑

k=2

‖Wk − Wk+1‖F , (67)

from which we have

‖WK+1 − W̄‖F

≤ ‖W K − WK+1‖F +
K−1∑

k=2

‖Wk − Wk+1‖F + ‖W2 − W̄‖F

≤ T
(
H1−θ

0 + ‖A0 − A1‖F + ‖A1 − A2‖F + ‖C2,N−1 − C2,N ‖F
)

+ ‖W2 − W̄‖F < ρ.

Hence, WK+1 ∈ B(W̄, ρ). By induction, we have Wk ∈ B(W̄, ρ) for all k, so (67)
holds for all K . Letting K → ∞ gives

∑∞
k=2 ‖Wk − Wk+1‖F < ∞, namely, {Wk}

is a Cauchy sequence and, thus Wk converges. Since W̄ is a limit point of {Wk},
then Wk → W̄ . This completes the proof.

References

1. Allen, G.I.: Sparse higher-order principal components analysis. In: International conference on artificial
intelligence and statistics (AISTATS), pp 27–36 (2012)

2. Bader, B.W., Kolda, T.G., et al.: Matlab tensor toolbox version 2.5 (2012). http://www.sandia.gov/
~tgkolda/TensorToolbox

3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2, 183–202 (2009)

4. Bolte, J., Daniilidis, A., Lewis, A.: The Lojasiewicz inequality for nonsmooth subanalytic functions
with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2007)

5. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an N-way
generalization of “Eckart-Young” decomposition. Psychometrika 35, 283–319 (1970)

6. Cichocki, A., Mandic, D., Phan, A.H., Caiafa, C., Zhou, G., Zhao, Q., De Lathauwer, L.: Tensor
decompositions for signal processing applications: from two-way to multiway component analysis.
arXiv:1403.4462 (2014)

7. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor Factorizations:
Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, UK (2009)

8. Cong, F., Phan, A.H., Zhao, Q., Wu, Q., Ristaniemi, T., Cichocki, A.: Feature extraction by nonnegative
tucker decomposition from EEG data including testing and training observations. Neural Inf. Process.
3, 166–173 (2012)

9. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(r1, r2, . . . , rn) approx-
imation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)

10. Ding, C., Li, T., Jordan, M.: Convex and semi-nonnegative matrix factorizations. Pattern Anal. Mach.
Intell. IEEE Trans. 32, 45–55 (2010)

123

http://www.sandia.gov/~tgkolda/TensorToolbox
http://www.sandia.gov/~tgkolda/TensorToolbox
http://arxiv.org/abs/1403.4462

70 Y. Xu

11. Donoho D., Stodden, V.: When does non-negative matrix factorization give a correct decomposition
into parts. Adv. Neural Inf. Process. Syst. 16 (2003)

12. Friedlander, M.P., Hatz, K.: Computing non-negative tensor factorizations. Optim. Methods Softw. 23,
631–647 (2008)

13. Harshman, R.A.: Foundations of the parafac procedure: models and conditions for an “explanatory”
multimodal factor analysis. UCLA Working Papers Phonetics 16, 1–84 (1970)

14. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge Univ. Press, Cambridge (1991)
15. Kiers, H.A.L.: Joint orthomax rotation of the core and component matrices resulting from three-mode

principal components analysis. J. Classif. 15, 245–263 (1998)
16. Kim, H., Park, H.: Non-negative matrix factorization based on alternating non-negativity constrained

least squares and active set method. SIAM J. Matrix Anal. Appl. 30, 713–730 (2008)
17. Kim, J., Park, H.: Toward faster nonnegative matrix factorization: a new algorithm and comparisons. In:

Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on, IEEE, pp. 353–362 (2008)
18. Kim, Y.D., Choi, S.: Nonnegative Tucker decomposition. In: Computer Vision and Pattern Recognition,

2007. CVPR’07. IEEE Conference on, IEEE, pp. 1–8 (2007)
19. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455 (2009)
20. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401,

788–791 (1999)
21. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process.

Syst. 13, 556–562 (2001)
22. Ling, Q., Xu, Y., Yin, W., Wen, Z.: Decentralized low-rank matrix completion. In: International Con-

ference on Acoustics, Speech, and Signal Processing (ICASSP), SPCOM-P1.4 (2012)
23. Liu, J., Liu, J., Wonka, P., Ye, J.: Sparse non-negative tensor factorization using columnwise coordinate

descent. Pattern Recogn. 45, 649–656 (2011)
24. Łojasiewicz, S.: Sur la géométrie semi-et sous-analytique. Ann. Inst. Fourier (Grenoble) 43, 1575–1595

(1993)
25. Mørup, M., Hansen, L.K., Arnfred, S.M.: Algorithms for sparse nonnegative Tucker decompositions.

Neural Comput. 20, 2112–2131 (2008)
26. Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utiliza-

tion of error estimates of data values. Environmetrics 5, 111–126 (1994)
27. Phan, A.H., Cichocki, A.: Extended hals algorithm for nonnegative tucker decomposition and its

applications for multiway analysis and classification. Neurocomputing 74, 1956–1969 (2011)
28. Phan, A.H., Tichavsky, P., Cichocki, A.: Damped gauss-newton algorithm for nonnegative tucker

decomposition. In: Statistical Signal Processing Workshop (SSP), IEEE, pp. 665–668 (2011)
29. Ramirez, I., Sprechmann, P., Sapiro, G.: Classification and clustering via dictionary learning with

structured incoherence and shared features. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3501–3508 (2010)

30. Schatz, M., Low, T., Geijn, V., Robert, A., Kolda, T.: Exploiting Symmetry in Tensors for High
Performance: Multiplication with Symmetric Tensors. arXiv, preprint arXiv:1301.7744 (2013)

31. Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to statistics and computer
vision. In: Proceedings of the 22nd international conference on Machine learning, ACM, pp. 792–799
(2005)

32. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311
(1966)

33. Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a
nonlinear successive over-relaxation algorithm. Math. Progr. Comput. 4, 333–361 (2012)

34. Xu, Y., Yin, W.: A block coordinate descent method for regularized multi-convex optimization with
applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6, 1758–1789
(2013)

35. Xu, Y., Yin, W., Wen, Z., Zhang, Y.: An alternating direction algorithm for matrix completion with
nonnegative factors. J. Front. Math. China Special Issue Comput. Math. 7, 365–384 (2011)

36. Zafeiriou, S.: Discriminant nonnegative tensor factorization algorithms. Neural Netw. IEEE Trans. 20,
217–235 (2009)

37. Zhang, Q., Wang, H., Plemmons, R.J., Pauca, V.: Tensor methods for hyperspectral data analysis: a
space object material identification study. JOSA A 25, 3001–3012 (2008)

38. Zhang, Y.: An alternating direction algorithm for nonnegative matrix factorization. Rice Technical
Report (2010)

123

http://arxiv.org/abs/1301.7744

	Alternating proximal gradient method for sparse nonnegative Tucker decomposition
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Overview of tensor
	1.3 Contributions
	1.4 Outline

	2 Sparse nonnegative Tucker decomposition
	2.1 Bound constraints for well-definedness
	2.2 APG for sparse NTD
	2.3 Parameter settings
	2.4 Per-iteration complexity
	2.5 Convergence results

	3 Sparse nonnegative Tucker decomposition with missing values
	4 Extensions
	5 Numerical experiments
	5.1 Implementation details
	5.1.1 Initialization
	5.1.2 Stopping criteria

	5.2 Nonnegative Tucker decomposition
	5.2.1 Synthetic data
	5.2.2 Image data

	5.3 Sparse nonnegative Tucker decomposition
	5.4 Sparse nonnegative Tucker decomposition with missing values
	5.4.1 Performance of APG with different sample ratios
	5.4.2 Comparison with HONMF

	5.5 Sparse higher-order principal component analysis

	6 Conclusions
	Acknowledgments
	7 Appendix A: Efficient computation
	7.1 Computation of mathcalCell
	7.2 Computation of Anell

	8 Appendix B: Complexity analysis of Algorithm 1
	9 Appendix C: Proof of Theorem 1
	9.1 Subsequence convergence
	9.2 Global convergence

	References

