Mathematical Programming Computation (2019) 11:381-420
https://doi.org/10.1007/s12532-018-0153-6

FULL LENGTH PAPER i
@CrossMark

Certifiably optimal sparse principal component analysis

Lauren Berk!® - Dimitris Bertsimas'

Received: 18 March 2017 / Accepted: 23 November 2018 / Published online: 1 January 2019
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019

Abstract

This paper addresses the sparse principal component analysis (SPCA) problem for
covariance matrices in dimension n aiming to find solutions with sparsity k using mixed
integer optimization. We propose a tailored branch-and-bound algorithm, Optimal-
SPCA, that enables us to solve SPCA to certifiable optimality in seconds forn = 100s,
k = 10s. This same algorithm can be applied to problems with n = 10,000 s or higher
to find high-quality feasible solutions in seconds while taking several hours to prove
optimality. We apply our methods to a number of real data sets to demonstrate that
our approach scales to the same problem sizes attempted by other methods, while
providing superior solutions compared to those methods, explaining a higher portion
of variance and permitting complete control over the desired sparsity. The software
that was reviewed as part of this submission has been given the DOI (digital object
identifier) https://doi.org/10.5281/zenodo.2027898.

Keywords Sparse principal component analysis - Principal component analysis -
Mixed integer optimization - Sparse eigenvalues

Mathematics Subject Classification 62H25 - 65F15 - 65K05 - 90C06 - 90C26 - 90C27

1 Introduction

Principal component analysis (PCA) is a statistical technique used to understand the
orthogonal directions that account for the majority of the variability in a data set
[37]. Given an m x n data matrix A, with m data points each with n dimensions, we
can compute a sample covariance matrix Q = A’A/(m — 1). By construction, Q is
symmetric and positive semi-definite. With this sample covariance matrix, or in fact

B Dimitris Bertsimas
dbertsim@mit.edu

Lauren Berk
Iberk @mit.edu

1 Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-018-0153-6&domain=pdf
http://orcid.org/0000-0002-6617-4447
http://orcid.org/0000-0002-1985-1003
https://doi.org/10.5281/zenodo.2027898

382 L. Berk, D. Bertsimas

any positive semi-definite matrix Q, the first goal of PCA is to find the first principal
component:

max XQx s.t x| =1. PCA (1
X

The solution to Problem (1) is simply the first (eigenvalue-maximizing) eigenvector
of Q, which can be computed in a number of ways, including the simple power method
[66].

Subsequent principal components are orthogonal to existing components, and are
chosen to maximize the remaining variance explained after subtracting the variance
along the prior components. For example, given a first component X, we can create
an adjusted covariance matrix by projecting:

Q = (I —xix)QU —x1x}). ©))
The second principal component is found by maximizing:
max X Qux s.t x|} = 1. 3)
X

This second component x; will explain the optimal amount of remaining variance
once x| is accounted for. Subsequent components are derived analogously.

PCA and closely-related techniques (“factor analysis™ [15], canonical correlation
analysis [30,68]) are widely used in multivariate data analysis to identify a minority
of dimensions (“‘components” or “factors”) that can summarize the data. When these
factors are interpretable, they can lead to a deeper understanding of the underlying
phenomena. Since PCA reduces dimensionality, it can be used for data and image com-
pression [23], as well as identifying separate components in an image or sequence of
images [13]. Reducing dimensionality can also be helpful as a preprocessing step in
machine learning models; resulting models are better able to avoid overfitting and mul-
ticollinearity [22]. Applications are numerous, including medicine [21], horticulture
[33], and computer network science [42] among many others.

A disadvantage of PCA is that the identified components typically have non-zero
loadings on every variable. While PCA reduces dimensionality in the sense that the
first few principal components span a smaller space than the original data, it does not
reduce the number of relevant variables. In order to reproduce results or add additional
data points to the model, researchers still need to collect all the original variables.
For example, PCA is often used in genetics research for reducing the dimensionality
of data sets that can contain 10,000 or more variables [31,44,58]. There is a real
concern in this application that many of the loadings on the principal components
reflect noise in the data, and there is a desire for PCA to help with variable selection
in addition to dimensionality reduction. Traditional principal components are also
difficult to interpret. By 1967, in a pivotal paper on PCA case studies, Jeffers [35] was
already discussing the need for methods that reduce the number of variables involved
in components to improve interpretability.

These considerations inspired work to sparsify principal components without com-
promising their explanatory power by solving the sparse principal component analysis

@ Springer

Certifiably optimal sparse principal component analysis 383

(SPCA) problem. Specifically, a constraint on the £y “norm” of x, ||x|lo (that is,
{ilx; # 0}]) is added to Problem (1), limiting the number of non-zero loadings
of x to some integer k. The SPCA problem is then,

max x' Qx
X,y
n
st. Y xf=1 SPCA 4)
i=1
[IX[lo < k.

Subsequent components in this case are more complicated. Itis no longer possible to
find components that are mutually orthogonal that also maximize variance explained.
The main focus of this paper is solving the first SPCA component problem in Problem
(4), but we explore the issue of multiple components further in Sect. 2.2.

Research into SPCA has been accelerating recently, due to the growing scale of
research problems. Generally, increasing the number of samples in a data set does not
increase the computational difficulty of the problem, since the size of the covariance
matrix Q is only determined by the number of variables in the data. However, modern
applications such as genomic analysis and physics involve high-dimensional data sets
which drastically increase the size of Q and the size of the solution space, pushing the
limits of computational feasibility.

Despite decades of research, no existing method can solve Problem (4) to provable
optimality in practical time. In this paper, we develop an algorithm, based on principles
from mixed integer optimization (MIO), that solves this problem to optimality. In
addition to advancing the state of the art for SPCA, the present work also contributes
to the growing literature [63] reconsidering difficult problems in statistics and machine
learning through the lens of modern optimization techniques. Topics studied include
belief propagation [69], support vector machines [52,71], classification and regression
trees [8], graph clustering [17], parameter setting [62], subset selection [53], factor
analysis [7], k-means clustering [34] and many others. Collectively, these new methods
are aspiring to change machine learning from an art of heuristics into a science of
optimality.

A set of problem definitions will assist our discussion of the literature. Broadly,
formulations of the SPCA problem fall into these categories (with y < 0, k a positive
integer, and Q an n x n positive semi-definite matrix) [50,60]:

£1-constrained: max X' Qx s.t. [|x|l2 = 1, ||x||; < k;
— {o-constrained: max x'Qx s.t. ||x|2 = 1, ||x|lp < k;
£;-penalized: max x'Qx + y[[x||1 s.t. [[x[2 < 1;
£o-penalized: max X' Qx + y||x]|o s.t. [|x|l2 < 1.

In particular, the £o-constrained formulation is exactly Problem (4). Addition-
ally, there are convex relaxations of these problems, and some papers [60] consider
alternative primary objectives to x'Qx. Our algorithm is designed to address the ¢¢-
constrained problem.

@ Springer

384 L. Berk, D. Bertsimas

1.1 Review of literature

Formulations and relaxations After Jeffers [35] identified the importance of inter-
pretable and sparse components, early work on sparse principal components focused
on rotating the basis of the first few principal components within the subspace they
generated, to reduce the £¢ norm of each vector [36,59]. The varimax criterion, devel-
oped in 1957 by Kaiser [40], is the most commonly used approach to rotation in both
PCA and factor analysis. Today, it is common practice to rotate principal components
in the course of data analysis in many fields.

Another early thread of work on SPCA was inspired by the development of LASSO
[64] for variable selection and shrinkage. LASSO can be used as a method for solving
the sparse regression problem by adding an £ penalty to the objective function, which
forms the unconstrained, continuous, convex problem [28]. Jolliffe et al.[38] devel-
oped SCoTLASS (Simplified Component Technique—LASSO) from these ideas.
SCoTLASS introduced the £1-penalized formulation of SPCA and proposed using
gradient ascent techniques to solve it. Later, additional computation methods were
developed for SCoTLASS, including [67].

Zou et al. [73] proposed a convex relaxation to the ¢1-penalized formulation, using
the elastic net (incorporating a ¢ penalty on x in addition to the £; penalty). Leng
and Wang [46] also built upon SCoTLASS by replacing the LASSO penalty with an
“adaptive” penalty vector that varies by index. A different approach to sparse PCA
components was taken by Bair et al. [3], who took into account the correlation of
the variables with some outcome when selecting a support. This supervised approach
solves a different problem than SPCA, but is motivated by the same objective.

The paper by d’Aspremont et al.[20] developed a convex relaxation of the
£p-constrained formulation called Direct SPCA (DSPCA) using semi-definite opti-
mization. While often providing solutions superior to earlier methods, DSPCA
struggled to solve problems on the same scale as other methods, hitting a limit around
n = 100. Since the sparsity constraint is relaxed in this formulation, solutions can have
sparsity k" greater than the target sparsity k. In this case, the solutions are infeasible and
super-optimal for the SPCA problem with the target sparsity k, and are feasible (but
likely sub-optimal) for the SPCA problem with the target sparsity k". In a follow-up
paper, d’ Aspremont et al. [19] developed a greedy approach to solve this formulation
and a polynomial time algorithm for providing a certificate of optimality (proving opti-
mality for the semi-definite relaxation, not the £o-constrained problem). Additionally,
Amini and Wainwright [1] explored semi-definite relaxations of the SPCA problem
in higher dimensions.

First order methods Recently, a large number of gradient ascent and local search
methods have been proposed for solving SPCA problems.

Journée et al. [39] proposed a method called GPower for solving £o-penalized and
£1-penalized problems that involved combining the power method (that is, identify-
ing the leading eigenvector of a matrix by repeated iterations of x;;; = Qx; until
convergence) for computing the first eigenvector of a matrix with thresholding and
renormalizing steps. Hein and Biihler [29] derived an approach based on the inverse
power method with similar thresholding. Yuan and Zhang [70] and Luss and Teboulle

@ Springer

Certifiably optimal sparse principal component analysis 385

[50] proposed methods including one we will use in this paper, which reduces sparsity
of the solution to a fixed k at each step instead of truncating values that fall below a
fixed threshold. Ma et al. [51] expanded this work from individual vectors to sparse
subspaces. More recently, Chan et al. [16] proposed a simple, closed form solution that
can be applied to very large scale problems with bounded approximation error, and
Beck and Vaisbourd [4] developed new, stronger optimality conditions and designed
algorithms to find points that satisfy those conditions.

These methods are extremely fast, and are accompanied by results showing conver-
gence to stationary points, but all are susceptible to becoming trapped at local optima.
These results are usually compared, then, on their computational tractability, and the
variance they explain in numerical experiments. None of these methods provide a
certificate of optimality, but are very useful as warm starts for exact methods.

Preprocessing and parallelism Some recent papers on high-dimensional SPCA have
incorporated preprocessing stages into their algorithms to improve speed and tractabil-
ity by reducing the dimensionality of the input data. The key idea is removing variables
from the problem (eliminating rows and columns from the Q matrix) if it can be proven
that they cannot occur in an optimal sparse solution to the problem. Zhang and Ghaoui
[72] showed that for the ¢;-penalized formulation with penalty coefficient y, any
variable can be removed if its variance falls below y (that is, if Q;; < y). Lee et
al.[45] developed a similar approach, removing variables whose variance falls below
a calculated threshold. More specialized preprocessing exists for individual algorithms
[56]. Unfortunately, no such guarantee exists for the £y-constrained problem in which
we are interested. We will use ideas related to these methods, of eliminating possi-
ble indices by considering the variance of individual variables, when we develop our
branch-and-bound approach.

Efforts to speed up SPCA methods also include work on parallel computing.
Richtarik et al. [60] considered all four main formulations we have discussed, along
with several more, and proposed solution methods using alternating maximization. A
key contribution of Richtarik et al. was the incorporation of parallel computing meth-
ods for matrix—vector products. This work increased the maximum size of tractable
problems for earlier methods developed by Richtarik et al. While we will not be using
parallelized code in our work, research into parallel branch-and-bound research has
been active since the 1980s, and these ideas may be beneficial for future work [41,47].

Mixed integer optimization and SPCA Traditionally, computational problems have
been deemed intractable if polynomial-time algorithms are unavailable or of high
degree. The theory of computational complexity developed in the 1970s characterized
problems as NP-hard to indicate that they are very unlikely (unless P=NP) to have
polynomial time algorithms to solve them. NP-hardness became synonymous with
intractability.

Since the early 1990s, MIO solvers, including CPLEX [32] and Gurobi [26], have
seen massive gains in speed. In the period 1990-2016, MIO solvers became about
1,250,000 times faster [12,25,55]. Coupled with hardware enhancements over the
same period [65], a MIO problem in 2016 can be solved 2 trillion times faster than in
1990. These speedups encourage us to rethink whether NP-hardness should in fact be
synonymous with intractability.

@ Springer

386 L. Berk, D. Bertsimas

There have been some attempts to apply exact MIO methods to SPCA. Moghaddam
etal. [54] devised a branch-and-bound method by bounding eigenvalues of submatrices
of the covariance matrix—an idea that we build upon in this paper. However, the
bounds in the paper were too weak to provide the method with tractability, and the
paper admitted the method takes over an hour to run a case with n = 40, k = 20,
whereas we will demonstrate that our algorithm can run for n in the 1,000s. More
recently, Carrizosa and Guerrero [14] proposed a novel MIO formulation of SPCA
that involves nonlinearities, but since solutions could only be identified using a local
search method, optimality could not be guaranteed. Asteris et al.[2] used a different
combinatorial approach, bipartite matchings, to find solutions to a multi-component
version of SPCA with disjoint supports. This paper will explore additional methods
based on MIO principles.

The work in this paper is also inspired by the application of mixed integer methods
to other problems in statistics. In recent years, these techniques have been applied to
classification [8,11], regression [9], support vector machines [57] and subset selection
[10] among others. Many more examples are presented in a survey by Bennett and
Parrado-Herndndez [5] of optimization methods applied to machine learning problems.

1.2 Motivation for £o-constrained SPCA over other formulations

In our review of the literature, we encountered an array of proposed solutions to the
sparse principal component analysis problem. Some provided algorithms for solving
£1-based formulations and convex relaxations. Other algorithms approached the £¢-
constrained formulation, but only provided local search methods without a guarantee
of optimality. Some recent work has expanded the size of the problems that can be
attempted using these methods, but has not improved the optimality of the resulting
solutions. The exact methods that have been proposed have either been too slow to
be practical, or too difficult to be solved globally, again requiring local methods. No
approach thus far has provided a provably optimal solution to the £(-constrained SPCA
problem, to which we now turn our attention.

Our work focuses on the £p-constrained SPCA formulation in Problem (4). We
believe this formulation is the most important of the four presented formulations to
solve. The parameter k is more interpretable than y and makes it easier to generate
solutions of a desired sparsity. In addition, if a problem can be solved for all k, the £¢-
penalized problem is automatically solved as a result: the objective max x'Qx+y || X||o
could be computed at each sparsity level k, and the minimum selected out of finitely
many values. On the other hand, at least in practice, the correspondence does not
function in reverse. There may be values of k that correspond to no values of y, and
so performing a binary search on the value of y cannot turn an ¢¢-penalized algorithm
into a £p-constrained algorithm.

The £ variants of the problem are computationally simpler than the £(variants, but
at a high cost. £ penalties and constraints do not just promote sparsity—they simulta-
neously penalize (“shrink™) the solution’s loadings. While this can add some robustness

@ Springer

Certifiably optimal sparse principal component analysis 387

to the model [6], it sacrifices the variance explained, even after post-processing by
computing a PCA solution on the final support. It will be clear from the computa-
tional experiments that £1-based solutions will consistently explain less variance than
£o-based solutions.

1.3 Our approach

The approach taken in this paper is to develop a tailored branch-and-bound algorithm
to address the £y-constrained SPCA problem. This algorithm leverages fast first order
methods to find feasible solutions, and derives upper and lower bounds from linear
algebra principles.

In numerical experiments involving real and generated data sets, we demonstrate
that our approach:

1. Finds near-optimal (often optimal) solutions in seconds (for n = 10,000s, k =
10s).

2. Gives certifiably optimal solutions in seconds (for n = 100, k = 10s).

3. Provides superior solutions compared to existing methods, by explaining a higher
portion of variance and permitting complete control over the desired sparsity.

1.4 Structure

The structure of the paper is as follows. In Sect. 2, we develop at a high level a branch-
and-bound approach to the £y-constrained SPCA problem and prove the correctness
of the algorithm for finding optimal solutions. In Sect. 3, we derive four upper bounds
and three lower bounds for the SPCA problem with partially-determined support using
ideas from linear algebra. In Sect. 4, we discuss parameters that affect the algorithm’s
performance, strategies for improving computational tractability, and experimental
evidence for making principled parameter choices. In Sect. 5, we perform a variety
of computational tests on synthetic and real data sets to assess the algorithmic and
statistical performance of our approach, and compare our results to those of other
methods from the literature, demonstrating our claim that we are able to provide
solutions that explain greater variance than existing methods. In Sect. 6, we include
some concluding remarks.

1.5 Notation

We will refer throughout the paper to a more explicit formulation of the £y-constrained
SPCA problem we will call SPCA-MIO:

@ Springer

388 L. Berk, D. Bertsimas

max x'Qx
Xy

n
s.t. Zx,z =1
i=1
—yi<xi<y i=1,...,n SPCA-MIO (5)

n
D vi=k
i=1

xe[—1,171"
y € {0, 1)".

Here y is the support vector that captures which components of x are non-zero.
Q is an n x n positive semi-definite covariance matrix. We restrict Y »_, y; = k
exactly instead of using an inequality, since this does not restrict the feasibility of the
x values we are interested in(since any solution with [|x|lo < k corresponds to at least
one support y with |ly|lo = k), and helpfully limits the feasible space of solutions
from the perspective of algorithm design. That is, fixing Y ', y; = k allows us
to say that when n — k components of y are fixed at 0, the remaining k£ must be
fixed at 1.

We use the notation || - ||, to denote the £, norm of x. That is, [|x|[1 = >_; [x;],

Xl = />, xl.z, and ||x|lo = |{i : x; # 0}], the £y “pseudo-norm”. We use | - | to
refer to the absolute values of a number or vector, and the set cardinality when applied
to a set. In general, we reserve capital boldface letters like Q for matrices, boldface
lowercase letters like x for vectors, non-bold lower case letters like k for scalars, and
script capital letters like NV for sets.

2 A branch-and-bound algorithm for SPCA

Since the SPCA-MIO is non-convex, it cannot be solved by any but the most flexible,
non-convex mixed integer nonlinear solvers, such as Baron, SCIP, and Couenne. A
direct attempt was made to use an existing solver (Couenne) to solve the problem, but
Couenne was unable to solve even the smallest problems n = 13, k = 10 within an
hour. We report a full demonstration in Sect. 5.5, concluding that a general branch-
and-bound approach is not tractable for solving the SPCA-MIO model on the scale of
problems addressed by other existing SPCA algorithms.

In this section, we will develop a customized branch-and-bound framework to
solve the SPCA-MIO problem. We build an enumeration tree that branches on the
components of the support vector y that underlies x, and we develop bounds from
closely studying the algebraic properties of the tree’s subproblems.

To aid in the development of this algorithm, we will consider a family of prob-
lems derived from the original SPCA-MIO problem that we call SPCA with Partially
Determined Support (SPCA-PDS). Each of these problems represents a subproblem
of SPCA-MIO where we fix some components of y.

@ Springer

Certifiably optimal sparse principal component analysis 389

To form these problems, we will use lower and upper bound vectors 1, u € {0, 1}"
to bound y. This captures decisions we have made about a particular y;. To enforce
yi = 1 we setl; = 1, and to enforce y; = 0 we set u; = 0.

max x' Qx
X,y

—yi<xi<y i=1,...,n SPCA-PDS 6)

y € {0, 1}"
I<y<u Lue{0,1}".

For ease of reference, we will use the notation X(1, u, k) to mean the set of feasible
x vectors in Problem (6), so we can write the SPCA problem with partially determined
support (SPCA-PDS), as simply:

!
max x Qx. 7
xeX(l,u,k) Q ()

We can form an SPCA-PDS problem by choosing any 1, u € {0, 1}* and0 < k < n.
The problem will have a non-empty feasible setaslongasl <w, Y [; <k, Y u; > k.
In particular, if we choose 1 = {0}",u = {1} then we have exactly Problem (5),
SPCA-MIO. If instead we make 1 = u, we have SPCA-MIO for a fixed support. In
this case, the variable y becomes a constant, and by eliminating the rows and columns
of Q that correspond with y; = 0, the problem reduces to Problem (1), PCA. For
choices of 1, u between these two extremes, we get an SPCA problem with partially
determined support.

This problem formulation gives us a vocabulary with which to discuss the SPCA
branch-and-bound tree. Each node of the tree is identified with a pair (1, u). At the
root node we have the original SPCA-MIO problem (1 = {0}, u = {1}"), and at each
branch, the bounds are tightened in one dimension.

If we were to enumerate the entire tree, every leaf would have 1 = u. However, some
leaves would represent empty feasible sets, because they would require Y y; # k. For
example, consider a problem withn =4,k =2.1If (1,u) = ({1}*, {1}*) for example,
there could be no x satisfying ||x||p < k in the feasible set. Instead of exploring parts of
the tree with empty feasible sets, we will stop when we reach a node that represents at
most one feasible y vector. For example, the bottom left node in Fig. 1 is terminal for
this problem, even though 1 # u, because) I; = k, and so it corresponds to exactly
one support vector, y = (1, 1, 0, 0).

To determine when we have arrived at a terminal node, we can use the following
terminal function for upper and lower bound vectors 1, u and k > 0O:

@ Springer

390 L. Berk, D. Bertsimas

0 1
0 1
0’11
0 1

1 1 0 0

0 1 0 1

0’11 0’11

0 1 0 1
1 1 1 1
1 1 0 0
0o]’11 0’11
0 1 0 1

Fig.1 An example of two branching steps in an SPCA enumeration tree
true, if Y.l >k,
isTerminal(1, u, k) = 3 true, if Y u; <k, ®)

false, otherwise.

At one of these terminal nodes, SPCA-PDS reduces to PCA restricted to that sup-
port, and therefore the optimal solution at one of these terminal nodes is the first
principal component of Q restricted to the rows and columns where the support is
non-zero. Since we will not branch further on these nodes, we can discard them after
checking to see if they improve upon the best feasible solution.

The real benefit of branch-and-bound, however, is that we do not need to enumerate
the entire tree. We only have to explore subtrees further where superior solutions may
potentially exist—that is, we need only explore subtrees with upper bounds above the
best feasible solution found so far. To take advantage of this, we will build methods
to compute upper and lower bounds at each node for the subtree rooted at that node.

This algorithm relies on two key methods: lower(-) and upper(-), that calculate
lower and upper bounds for SPCA-PDS:

lower(1,u, k) = (x'Qx for some x € X(I, u, k)) , 9)
upper(l,u, k) > (X/QX for all x € X(1, u, k)) . (10)

For now, we will take for granted that we have ways of computing these bounds.
In Sect. 3, we will make explicit how these bounds are computed.

2.1 Introduction to Algorithm 1: Optimal-SPCA

We now present Algorithm 1 and the accompanying Theorem 1 to make these ideas
explicit, and prove the validity of the approach. The goal of Algorithm1 is to find
e-optimal solutions to SPCA-MIO, for any € > 0. This means Optimal-SPCA will

@ Springer

Certifiably optimal sparse principal component analysis 391

find a solution X with objective value within € of the optimal objective value. Since
SPCA-MIO is a special case of SPCA-PDS with 1 = 0,u = 1 we can write the
feasibility set of SPCA-MIO as X(0, 1, k), so that we can write the definition of an
€-optimal solution as some X that satisfies:

FQ% > x'Qx — e Vx e X(0, 1, k).

We do allow the choice of € = 0 here. Since there are finitely many nodes in the
enumeration tree, the algorithm can find the provably optimal solution with € = 0.
In practice, choosing a small € > 0 reduces run-time without significantly sacrificing
solution quality.

Algorithm | considers a tree consisting of pairs (I, u) of lower and upper bounds
on the support y. A list of unexplored nodes is maintained, and at each iteration of
the algorithm, an unexplored node is selected and split into two complementary nodes
by choosing an index that is not fixed and setting it to /; = 1 and u#; = 0 in the two
child nodes, respectively. If the new nodes are terminal, the SPCA-PDS problem is
equivalent to PCA, and so the exact solution is returned. If the node is not terminal,
the algorithm continues by computing additional bounds. Segments of the tree are
removed as their upper bounds fall below the best known solution, until the highest
upper bound is within € of the best feasible solution, guaranteeing e-tolerance.

Algorithm 1: Optimal-SPCA

Input : Covariance matrix Q, target sparsity k, optimality tolerance € > 0
Output: Sparse vector X with [|X]|g = k and [|X||2 < I that maximizes X’ QX within the optimality
tolerance €

1 initialize ng = (1, w) = ({0}", {1}") as the root node
2 initialize node set N = {nq}
3 initialize X = {0}"
4 initialize lower bound /b = 0, upper bound ub = the largest eigenvalue of Q, Amax(Q)
5 while ub — b > ¢; do
6 select (1, u) € N/
7 select some index i where [; =0, u; =1
8 for val =0, 1 do
9 newnode = ((¢1, ..., ¢;—1,val, €iyy, ..., L), (uy, ..., uj_y,val,ujiy, ..., uy)
10 if isTerminal(newnode) then
11 compute the optimal solution x to the problem at newnode,
12 set upper = lower = x'Qx
13 else
14 compute lower = lower (newnode), with corresponding feasible point
x € X1, u, k)
15 compute upper = upper(newnode)
16 if lower > [b then
17 update b = lower
18 update X = x
19 remove any node € A with upper < Ib
20 if upper > Ib then
21 | add newnode to N/
22 remove (I, u) from N
23 update ub to be the greatest value of upper over N’
24 return X

@ Springer

392 L. Berk, D. Bertsimas

Theorem 1 (Correctness of Optimal-SPCA) Optimal-SPCA terminates in finitely
many iterations at an €-optimal solution for SPCA-MIO.

Proof The validity of Optimal-SPCA relies primarily on the validity of the branch-
and-bound approach for discrete optimization problems [43]. We outline here a few
key points involved in the application of this method to our problem.

The maximum number of iterations of the algorithm is capped at the number of
possible nodes (which are distinct elements of {0, 1)2m), ensuring the algorithm will
terminate in finitely many iterations. Nodes are only removed in Steps 19 and 22, if
they are dominated by the best feasible solution so far, or because they have been
partitioned into pairs of complementary nodes. Therefore no optimal solution will be
removed before termination. The algorithm will not terminate until ub — Ib < € so
that some feasible solution has been identified that is e-optimal.

We conclude that Optimal-SPCA is an exact algorithm for computing an e-optimal
solution to the SPCA problem, and is guaranteed to terminate in finite time, given
valid methods upper and lower computable at every node (1, u). O

2.2 A note on subsequent components

The intended purpose of Optimal-SPCA is to find the optimal first sparse principal
component, but it can also be used to find subsequent sparse components. Given a first
component X|, we can project the matrix Q into the space perpendicular to x; as in
Eq. 2:

Q2 = (I —xix)QU — xix)).

A second sparse principal component can then be found by applying Optimal-SPCA
to the new matrix Q. This second component x; will explain the optimal amount of
remaining variance once X; is accounted for.

In traditional PCA, this process of repeated projections of the matrix Q and the
choice of the principal eigenvector of Q results in a sequence of orthogonal compo-
nents. Moreover, for all p, the first p components jointly explain the greatest variance
of all possible sets of p vectors.

Our SPCA algorithm returns subsequent components that differ in two respects.
Subsequent components are not guaranteed to be orthogonal (though they may be), and
since the components are computed consecutively, they may not be jointly optimal for
the multivariate problem. However, the computational performance of this approach,
demonstrated in Sect. 5.3, is strong compared to other methods that do not take an
iterative approach to multiple components.

It is conceivable to adapt Optimal-SPCA to maximize the total variance explained
over multiple sparse principal components at once. The branch-and-bound formulation
extends easily to multiple components by allowing nodes to represent lower and upper
bounds on the supports of multiple components at once. The computational difficulty
arises in calculating bounds and in exploring the exponentially larger tree of possible
supports. While this would be possible to formulate, it would only be able to solve the
smallest of SPCA problems.

@ Springer

Certifiably optimal sparse principal component analysis 393

3 Linear algebra bounds for SPCA with partially-determined support
We turn now to constructing

lower(l,u, k) = (X/QX for some x € X(I, u, k)) ,
upper(l,u, k) > (x'Qx for all x € X(1, u, k),

which are upper and lower bounds to the optimal value of the problem SPCA-PDS:

/
max X Qx.
xeX(l,u,k)

We start by considering trivial constructions:

Iby =0, (11)
uby = Amax(Q). (12)

These are trivially valid lower and upper bounds. Optimal-SPCA will eventually
arrive at the optimal solution of SPCA-MIO by using /by and ubg. However, by
providing tighter bounds, we can improve the performance of Optimal-SPCA and
reduce the number of nodes that must be explored in order to prove optimality.

In this section, we propose several methods for computing tighter bounds that will
enable us to solve the SPCA problem while exploring a much smaller subset of the
branch-and-bound tree. First, we introduce a subroutine that will be useful throughout
the development of these bounds.

3.1 A useful truncation routine

Many of the bounds we develop involve a step that takes an arbitrary length n vector
x as input and outputs a vector X in the feasible set X(1, u, k). We will want to make
this selection to minimize ||x — X||2 over X € X(l, u, k).

It can be shown that this problem is solved by preserving the largest loadings subject
to feasibility constraints. That is, X contains the largest k elements of x subject to two
restrictions: that the elements must include those with /; = 1 and must not include
those with u#; = 0. A routine that makes this procedure explicit will be useful for the
work ahead. We provide this routine explicitly in Algorithm 2.

The function T runc will be used in two ways. It will be used in Sects. 3.5 and 3.6 for
projecting an arbitrary vector onto a vector that is feasible for the SPCA-PDS problem
(after normalization). Trunc can also be thought of as solving the maximization
Problem (13), which makes Trunc useful for computing the worst case eigenvalue
bounds over all feasible supports in Sects. 3.3 and 3.4.

m}jn inz(l — i)
i (13)
s.t. l§y§u,2yi =k.

@ Springer

394 L. Berk, D. Bertsimas

Algorithm 2: Trunc(-, 1, u, k)

Input : Vector x, target sparsity k, lower support bound 1, upper support bound u
Output: Sparse vector X € X(1, u, k) that minimizes ||x — X||»
1 Formthe set Z| = {i|l; = 1}
2 Form the set Zp = argmaxjc(1,... n) 2 1%l s.t. [; =0,u; = 1Vi € I, [I| =k — Y_1;. Ties are
broken by choosing the smallest index.
R xj 1 €1 UI,,

3 x; =
! 0, otherwise.

4 return X

3.2 An upper bound from eigenvalues

First, we consider how simple eigenvalues can provide a tighter upper bound than ubg
for the problem SPCA-PDS. Note that a feasible x € X(l, u, k) is also feasible for the
problem with the sparsity constraint lifted. That is, x is feasible for the problem:

max x' Qx
X
n
s.t. lez =1 (14)

i=1

xi=0 Vie {i|l/l,' =0}.

But since x; = 0 for all i with u; = 0, we can rewrite the objective using a different
covariance matrix,

x'Qx = E gijxixj = X Qux, (15)
i,js.t
uj,uj=l1

where we define Qy as:

gij, ui=uj=1,

Quij = (16)

0, otherwise.
Problem (14) thus simplifies to:
max X Qux
X (17)

s.t. x|z = 1.

This is now a non-sparse PCA problem with optimal solution value Apax(Qu)-
Since Problem (14) is a relaxation of Problem (5), Amax (Qu) provides an upper bound
to Problem (5). This gives us an upper bound for SPCA-PDS as well, which we will
write as:

ubi(l,u, k) = Amax (Qu). (18)

@ Springer

Certifiably optimal sparse principal component analysis 395

3.3 An upper bound from the matrix trace

Linear algebra gives the fact that the sum of the eigenvalues of a matrix is the
trace of that matrix. Since our matrix Q is positive semi-definite, its eigenvalues are
non-negative, and therefore the trace of Q provides an upper bound on each of the
eigenvalues of Q. From this fact, we can derive another upper bound for the SPCA
problem with partially determined support.

Consider any x € X(1, u, k), and again let y be the corresponding support vector of
x (y; = 0 if and only if x; = 0). Then x is feasible for the problem where the support
is restricted to y. That is, we know x € X(y, y, k).

We can use the same trick as in Eq. (15) to equate,

x'Qx = x'Qyx (19)

where Qy is formed as Qu was formed, by zeroing out rows and columns of Q where
yi = 0. Then as before, X'QX < Amax (Qy), and this time we apply the new bound of
the trace:

x'Qx < Amax (Qy) =< trace(Qy). (20)

We can compute an upper bound like this for all points x € X(I, u, k) by considering
the maximum possible value of trace(Qy) over all feasible y satisfying 1 < y <
u, > y; = k. Inthis case, we take Trunc(diag(Q), 1, u, k) and sum the components.
This gives an upper bound on trace(Qy) over all feasible y, and therefore an upper
bound ub, for the entire problem.

uby(lu, k) =" Trunc(diag(Q). 1. u, k);. Q1)

3.4 An upper bound from the Gershgorin Circle Theorem

The Gershgorin Circle Theorem [61] states that the eigenvalues of a positive semi-
definite matrix Q are bounded by the largest absolute column sum of Q. We define
the Gershgorin operator as:

Gersh(Q) = max Xl: 1Qijl. (22)

Then we can state the Gershgorin Circle Theorem as:

Gersh(Q) = Amax(Q). (23)
This theorem inspires an additional upper bound for SPCA-PDS.

@ Springer

396 L. Berk, D. Bertsimas

Again, we start by considering a point x € X(l, u, k). Let y be the corresponding
support vector of x. Then x is feasible for the problem where the support is restricted
to y. That is, we know x € X(y, y, k), and we have as before

X/QX = X/ny =)\max(Qy)~ (24)
Now we can bound Amax (Qy) from above using the Gershgorin Circle Theorem:
X'QX < Amax (Qy) = Gers}l(Qy)- (25)

Since this is true for any feasible x € X(1, u, k) the problem is overall bounded by
the maximum value of Gersh(Qy) over all feasible supports y. Explicitly,

max x'Qx < max Gersh(Qy)
I<y<u

xeX(l,u,k) <y=<
o vi=k
= max <m]ax Z|<Qy>i,-|)
> vi=k !
(26)
= max | max Z|(Qy>,~,~|
Yyi=k !
= T L, Lu k).
[max, (Z runc(|Q;l,1,u >,>

Note that we only have to take the maximum over columns j with #; = 1, since
any column with u; = 0 will be zeroed out in the matrix Qy in the previous step.
This maximum is then a new upper bound ub3 for the SPCA problem with partially-
determined support (1, u):

jouj

ubs(l,u, k) = max (Z Trunc(|Q;l,1, u, k),-)) (27)

3.5 A lower bound from eigenvalues

Any element x € X(l, u, k) will suffice to establish a lower bound. A principled way
of choosing x is to select some feasible support vector y, and take x as the principal
eigenvector of Qy.

One fast method of finding a promising y is to take the principal eigenvector of Qy,
that is, vimax (Qu), feed it to the truncation function Trunc(-,1, u, k) and let y be the
support of this vector. Then we simply take x to be the principal eigenvector of Qy.
The lower bound is then,

@ Springer

Certifiably optimal sparse principal component analysis 397

lbl (la u, k) = Amax(Qy) s.t. y = Supp(TrunC(Vmax(Qu)a ls u, k)) (28)

3.6 A lower bound from Yuan and Zhang [70]

Yuan and Zhang[70] created an iterative truncation algorithm that inspires an addi-
tional lower bound on our SPCA-PDS problem. The algorithm in [70] begins with
a k-sparse vector x and alternates between a power method step (x = Qx) and a
truncation step, limiting the support to the dimensions with the k largest absolute
loadings.

We can adapt this algorithm to accommodate the partially determined support (1, u)
by making a change to the truncation step. Instead of simply preserving the k compo-
nents with the largest absolute value, we must include components where /; = 1, and
we are forbidden from including components where u; = 0. That is, we involve our
truncation routine Trunc(-, 1, u, k) The complete algorithm is then:

Algorithm 3: A lower bound for SPCA with partially-determined support from
thresholding

Input : Covariance matrix Q, target sparsity &, lower support bound 1, upper support bound u,
optimality tolerance € > 0
Output: Sparse vector x € X(1, u, k)

1 initialize x0 = {0}, x! € X(1, u, k), x! # x9 (for instance, let x! = Trunc(vmax(Q), 1, u, k))
2 while |[x,,, 11 — X2 > €; do

3 XM = mefl

4 X" = Trunc(x™, 1, u, k)

5 XM =x"/|Ix" |2

6 return x”"

The bound /b, takes longer to compute than /by, but tends to dominate /b in value.
This is especially important if the algorithm is terminated early, to provide the best
chance at finding an optimal, or a near-optimal solution.

Ibs(1,u, k) = Alg3(l, u, k, Q, €). (29)

3.7 Collecting upper and lower bounds

In Sects. 3.2-3.6, we constructed three upper bounds and two lower bounds. In practice,
we can derive overall bounds by combining all these methods, which we will run at
every node:

ub = min(uby, uby, ubz) 30)
Ib = max(lby, [by). 3D

Note that we do not need to include /bg, ubg in the comparisons because in all cases
Iby > lbg = 0 and ub| < uby = Amax (Q), making the trivial bounds redundant.

@ Springer

398 L. Berk, D. Bertsimas

The remaining bounds, however, are critically not redundant. In particular, ub, and
ubz dominate one another depending on other characteristics of the covariance matrix
Q. Consider the following matrices with k = 2.

1 0 0 13 8 0
Mi=|0 1 O M,=|8 5 0 (32)
0 0 1 0 0 1
For the matrix M1, we have uby = 2, the sum of the largest two diagonal elements,
while ubs = 1, the largest absolute column sum of two elements, which corresponds
to the true largest eigenvalue of the matrix. In the matrix M, we have ub, = 18 while
uby = 21, this time uby dominating and coming close to the true largest 2-sparse
eigenvalue of 17.9. In both cases, ub; dominates ub, and ubs, but this is due to the
third dimension in the constructed examples being uncorrelated with the first two; ub
is often the weakest bound. Since it is difficult to know a priori but not difficult to
calculate which bound will be dominant, it benefits the algorithm to calculate all three
and choose the smallest value for an overall upper bound.

4 Computational tactics

So far, we have presented Optimal-SPCA at a high level. We have discussed how lower
and upper bounds for the SCPA problem with partially determined support allow us to
explore the space of support vectors in order to find a provably optimal solution more
efficiently than by brute force enumeration. We have suggested a number of lower and
upper bounds which, taken in combination, provide overall bounds on the problems
at each node.

These discussions have not fully determined the details of Optimal-SPCA, however.
In implementation, we must consider a number of parameters that affect how we make
branching, bounding, and other decisions. First we will look at the choice between
exploring the breadth or the depth of the tree, controlling the maximum number of
unexplored nodes at any point in time. We consider several approaches to choosing
which dimension of x to branch on, controlling the strategy and the number of steps to
take in searching for the branching dimension. Finally we consider emphasizing lower
or upper bounds, controlling the number of local search steps to use when establishing
a lower bound at each node.

In this section, we discuss in detail the choice of these parameters, providing numer-
ical experiments on the effects of the parameters on run-times, and recommended
values that we will use in the discussion in Sect. 5 of Optimal-SPCAs accuracy and
scalability. For each parameter set, we performed 500 iterations of sampling 80 out
of the 101 variables in the Communities data set from the UCI database [48]. We ran
Optimal-SPCA on each reduced problem, with a target sparsity k = 10. We report the
average values of time in seconds for the algorithm to prove optimality (“time to upper
bound”), and with hindsight, the time at which the algorithm identified as a feasible
solution what would prove to be the optimal solution (“time to lower bound”). We
also report the total number of nodes explored in the enumeration tree. We use these

@ Springer

Certifiably optimal sparse principal component analysis 399

results to provide recommended parameter values. While testing each parameter, we
held the others constant at default values: a maximum number of nodes of 10,000, two
local search steps at each node, and ten steps for selecting a branching dimension at
each node.

4.1 Choosing nodes: best-first versus depth-first

The two node selection heuristics we focus on are best-first and depth-first search.
In best-first search, at each iteration we choose the node with the highest remaining
upper bound. This ensures that the overall upper bound decreases at most iterations
(as long as there are not ties). In depth-first search, we continue to develop the most
recently added node until it either reaches termination or its upper bound falls below
the best feasible solution and the subtree at that node can be eliminated. Depth-first
search keeps the number of remaining nodes small, but spends less time tightening
the overall upper bound.

An algorithm running best-first search alone would quickly grow the number of
remaining nodes, continually replacing a single node with the largest upper bound by
two child nodes, only reducing the number of nodes in the tree as the upper bound
begins to converge to the lower bound and the algorithm nears completion. The size of
the tree could scale like (Z) On the other hand, a depth-first search algorithm would
keep the number of nodes exceedingly small, keeping the size of the tree on the order
of nk. While the methods differ in the order of nodes explored and how many nodes
are kept in memory, they typically result in the same number of total nodes explored
by the end of the algorithm.

To trade-off between these approaches, we consider the maximum number of nodes
that we keep in a queue in memory at a given time. When the remaining nodes are fewer
than this cutoff, the algorithm branches on nodes with the highest upper bound (best-
first search). When the number of nodes crosses over the cutoff, the algorithm turns
to depth-first search, starting with the most recently added nodes, until the number of
active nodes is reduced.

In Table 1 we see minor effects of the maximum queue size on the computational
speed of the algorithm. Generally, higher values of the limit result in longer times
to prove optimality, with no significant difference in the number of nodes explored.

Table 1 Effects of best- versus

Maximum Time (s) to Time (s) to Number of
depth-first search (controlled by number of lower upper nodes
the maximum size of the nodes bound bound explored
branch-and-bound tree) on) P
run-times and tree size in 10 0.1734 6.7330 22.804
Optimal-SPCA
100 0.1011 6.5560 22,801
1000 0.1028 6.5482 22,803
10,000 0.1034 6.9058 22,805
100,000 0.1033 7.8298 22,801

A combination of the two approaches leads to the lowest running times

@ Springer

400 L. Berk, D. Bertsimas

036+ I

—

034~
—g |4
—I

0.32

Upper Bound

0.30 -

0 5 10
Time in Seconds

w10 === 100 === 1000 10000
Cap === 20 === 200 2000 20000
== 50 === 500 5000
Fig. 2 Optimal-SPCA’s rate of convergence of upper bound on Communities data set depends on the

maximum number of nodes allowed in the queue. The larger the queue is allowed to grow, the tighter the
upper bound at each point in time, but at the expense of taking longer overall to converge

This indicates that the algorithm is spending more time at each branching step when
the limit is higher, since the algorithm needs to search over all the remaining nodes
to choose one to branch on and to update the overall upper bound. (In turn, this was
faster than maintaining a list of nodes sorted by upper bound value.)

We do not recommend choosing the smallest possible limit, however. While low
limits do not significantly hinder time to convergence, they mask the progress of the
algorithm by making slow progress on the reduction of the upper bound until the
algorithm has nearly terminated. In Fig. 2 we ran Optimal-SPCA 100 times with a
range of queue limits on the original Communities problem. We plotted the average
upper bound at each time point, with the lines terminating when optimality is proven. In
Table 2 we report in detail the time until optimality is proven in this set of experiments.

The results from Fig. 2 and Table 2 lead us to two conclusions. First, emphasizing
best-first search (allowing the maximum number of nodes in the queue to grow large)
results in the best upper bound achievable at each time point. Second, emphasizing
depth-first search (keeping the number of nodes in the queue small) results in the fastest
termination of the algorithm. The relative importance of these priorities depends on
the application, scale, and goals of the modeler, and so the final parameter value is
largely a matter of taste.

@ Springer

Certifiably optimal sparse principal component analysis 401

Table2 Optimal-SPCA’s time
to prove optimality on the
Communities dataset depends on
the maximum number of nodes 10 928
allowed in the queue

Maximum number Time (s) to prove
of nodes optimality

20 8.48
50 8.11
100 10.13
200 10.08
500 12.88
1000 14.23
2000 14.17
5000 13.99
10,000 14.17
20,000 14.06

Generally, larger queues result in longer times to converge, but overly
restricting the size of the queue also impedes run time

4.2 Choosing dimensions: random, fixed, and adaptive

Once a leaf node has been selected for branching, the algorithm must decide which as-
yet-undetermined index to fix in the child nodes. This corresponds to Step 7 of Optimal-
SPCA. The careful selection of a branching dimension has a significant impact on
the bounds we can achieve down the tree. By encouraging the algorithm to select
dimensions that explain large portions of the as-yet-unexplained variance, we can
better partition the solution space.

A naive approach is to use a completely random selection of dimensions. However,
this wastes significant time partitioning the solution space into very similar looking
subspaces with similar upper and lower bounds, making little progress.

One simple prioritization is to branch on the dimension of those available (i with
l; = 0,u; = 1) that has the largest possible absolute component of the principal
eigenvector of Q, that is, i = argmax;,—o, ;=1 [Amax(Q);|. At the root node, this is in
fact the dimension that explains the greatest possible variance. Lower in the tree, this
dimension may not necessarily explain the most variance, but the heuristic continues
to function better than random selection.

Another possible approach is to prioritize the dimensions not by loadings of the first
eigenvector but by the eigenvalues of the standard basis vectors (i = arg max; €;Qe; =
argmax; Q;;). This approach performs well when there is a significant spread in the
values Q;;, but the approach degenerates when Q is a correlation matrix (so that all
Qii = 1.

A more sophisticated approach is to prioritize by the loadings of the principal
eigenvector of Q,, which captures the changes in variance-explaining power that take
place as we descend the tree.

In Table 3 we compare the four methods of prioritizing branching dimensions:
random, by |Vimax (Q)il, by Qii, and by |vimax (Qu)i|. In the case of ties, the branching
dimension is chosen randomly from among the top-ranking indices. We considered

@ Springer

402 L. Berk, D. Bertsimas

Table 3 Effects of dimension selection methodology on run-times and tree size in Optimal-SPCA

Data set Method for Time (s) to Time (s) to Number of
dimension lower upper nodes
selection bound bound explored

Communities Random 0.0679 8.3950 20,092

Communities [Vmax (Q); | 0.0694 1.6149 3365

Communities Qii 0.0649 0.0771 9

Communities [Vmax (Qu); | 0.0659 0.1624 109

normCommunities Random 0.1016 0.3590 184

normCommunities [Vmax (Q); | 0.0975 0.2808 85

normCommunities Qi 0.0994 0.3399 148

normCommunities [Vmax (Qu); | 0.1024 0.2663 69

Prioritizing the dimensions with large loadings on the eigenvector of the reduced matrix Qy performs
consistently across problem structures, with other methods performing well in more limited contexts

both the covariance matrix and the correlation matrix of the communities data set. To
keep run-time reasonable for the covariance matrix test, we reduced the problem to
select 50 out of the 101 variables, and we used k = 5. For the correlation matrix, we
selected 80 of the 101 variables and used k = 5.

The results show that choosing branching dimensions according to Q;; and
[Vimax (Qu)i| dominate overall, with Q;; offering some advantage when eigenvalues
are widely distributed, and |vpmax(Qu)i| outperforming Q;; when data is normal-
ized. Our general recommendation is to prioritize branching dimensions according
to |Vmax (Qu)il, since this method performs well for finding principal components
of both covariance and correlation matrices. We included prioritization by Q;; as a
secondary option in the algorithm.

Computing the first eigenvector of Q, for every node, however, is computation-
ally expensive. As a middle ground, we consider taking several power-method steps
from the principal eigenvalue of Q to that of Q. The more steps we take, the more
confident we are in our choice of branching dimension, but the more we will pay in
computational time per node.

In Table 4 we see the trade-off between run-time per node and number of nodes
explored as we compute more iterations of the power method at each node to help
us select a branching dimension. The trade-off in this case is beneficial up to about
20 iterations. In larger problems, the time cost of computing these iterations will be
higher, and in order to provide a default that will work for a range of problem sizes, we
recommend a smaller value of 10 iterations. In some cases, this value can be increased
to improve performance.

4.3 Feasibility versus optimality: de-emphasizing lower bounds
We must also consider how much effort should be expended to work to find the best

lower bounds at each node. The parameter that controls the effort put into the calcu-
lation of lower bounds is the number of local search steps we take at each node using

@ Springer

Certifiably optimal sparse principal component analysis 403

Table 4 Effects of dimension

selection steps on run-times and iterations Time (s) to Time (s) to Num?er of
L) or lower upper nodes

tree size in Optimal-SPCA dimension bound bound explored
selection
0 0.1020 183.5768 694,490
1 0.0987 32.8741 118,874
2 0.0993 20.9729 73,563
3 0.0982 15.4463 52,784
4 0.0965 12.9729 44,201
5 0.0969 11.1544 37,810
6 0.0961 10.6936 36,225
7 0.0951 10.0357 34,059
8 0.0954 8.1165 27,381
9 0.0943 7.2210 23,848
10 0.0953 6.8468 22,805
15 0.0956 4.5605 14,958
20 0.0947 4.2638 13,809
30 0.0962 3.1453 9955
40 0.0962 4.1013 13,654
50 0.0974 3.0518 9727

More time spent selecting the dimension to branch on results in fewer
nodes explored in the tree, and overall smaller run-times

Algorithm 3. If we take zero steps, we trivially use as a lower bound the support formed
by prioritizing the dimensions with largest absolute loadings in the first eigenvector of
Q. As we take more steps, we come closer to running the entirety of Yuan and Zhang’s
algorithm at each node, improving the quality of the bounds, but drastically increasing
the work per node.

In Table 5 we see little benefit from more than a couple iterations of Algorithm 3. In
this experiment, dedicating more time to improving lower bounds saves at most 0.005 s
off the convergence of the lower bound, but adds significantly to the time it takes for the
algorithm to converge, since it requires more computation at each node. In most cases,
only one or two iterations of Algorithm 3 are necessary to achieve strong lower bounds.

4.4 Computing eigenvalues and eigenvectors

Many steps of the algorithm involve computing the principal eigenvalue of a matrix
Qy. In each case we used a power method approach with some adaptations.

Two of the upper bounds (ub>, ub3) do not require an eigenvalue computation. Since
our final upper bound will be the minimum of all three upper bounds, and because
the power method’s process of determining the largest eigenvalue is monotonically
increasing, we can run the eigenvalue upper bound ub; last, and terminate the power
method early if the norm of x crosses above the lesser of ub, and ubs.

@ Springer

404 L. Berk, D. Bertsimas

Table 5 Effects of local search

effort for lower bounds on I'\/Iax‘imum Time (s) to Time (s) to Num?er of
run-times and tree size in steps lower HPper nodes
Optimal-SPCA bound bound explored
0 0.0999 5.3822 22,804
1 0.0989 6.1295 22,802
2 0.0989 6.8352 22,303
3 0.0975 7.5748 22,802
4 0.0973 8.3241 22,801
5 0.0969 9.0840 22,802
6 0.0958 9.7792 22,800
7 0.0963 10.5060 22,801
8 0.0947 11.2302 22,804
9 0.0956 11.9454 22,306
10 0.0956 12.6792 22,805
15 0.0962 16.2266 22,793
20 0.0969 19.8704 22,805
30 0.0970 26.9684 22,802
40 0.0988 34.0215 22,802
50 0.1000 41.3359 22,802

Additional maximum allowed local search steps slightly improve the
time to identify the optimal solution, but significantly increase the time
to prove optimality

If the problem is very high dimensional, with the matrix A € R™*" having many
more dimensions than samples (n > m), then we can save some additional time in
computing eigenvalues. In this case, the data matrix A is actually much smaller than the
covariance matrix Q = A’A/(m — 1) € R"*", We can avoid repeated multiplication
by the large matrix Q by noting the equivalence::

(A’A)P
p— 7
Q= (m — 1P

_ (A)AA)PIA)
T (m—1Dp

(33)

Thus, instead of repeatedly multiplying a vector by Q € R"*", we can first multiply
it by A, then multiply the result repeatedly by the much smaller matrix AA" € R"*™,
finishing by multiplying the result of that step by A’. For data sets from applications
like genomics, where n far outstrips m, this will save significant computational time.

fAnother trick that helps in high dimensions is running computations not in the
original space, but in the space of the components involved. For example, when com-
puting the eigenvalue of some Qy, instead of repeatedly multiplying the zero values in
Qy by a vector, it is preferable to form a new Qy that only has height and width equal to
> yi, find its principal eigenvalue, and map those loadings back to the support vector
y. This dimension reduction is also important for the local search for lower bounds.

@ Springer

Certifiably optimal sparse principal component analysis 405

5 Computational results

In this section, we implement Optimal-SPCA on a number of real data sets and compare
the performance (solution quality and run-time) of our method against the state of the
art. We compare Optimal-SPCA to those by d’ Aspremont et al. [19], Hein and Biihler
[29], Richtarik et al.[60], Zou et al.[73], Jolliffe et al. [38], Journée et al.[39], and
Yuan and Zhang [70]. Since Yuan and Zhang’s method is adapted for use as a primal
heuristic within Optimal-SPCA, Yuan and Zhang and Optimal-SPCA often arrive at
the same solution in these experiments, with Optimal-SPCA taking additional time
and providing a certificate of optimality.

Experiments for Tables 6, 7, 8,9, 10 and 11 were performed on a four-core 2.4 GHz
processor with 16 GB of RAM. Experiments for Tables 12 and 13 were limited to a
single core on MIT’s Engaging cluster, with a 2.0 GHz processor and 32 GB of RAM.
The methods by d’ Aspremont et al., Hein and Biihler, and Richtérik et al. were run with
the authors’ published packages in Matlab. The methods by Zou et al. and Jolliffe et al.
were run with their published packages in R. The methods by Journée et al., Yuan and
Zhang, and Optimal-SPCA were written for use in this paper in Julia 0.6 without the
use of mathematical programming solvers. The experiments in Couenne for Table 10
used Couenne version 0.5 with AmpINLWriter in Julia. For all experiments, the default
parameters were used for Optimal-SPCA: a maximum number of nodes of 10,000, two
local search steps at each node, and ten steps for selecting a branching dimension at
each node. For experiments where computational time is included, the results reported
are the average times across all the experimental runs.

5.1 Description of data sources

We performed experiments on five data sets: the frequently used Pitprops set, three
sets from the UCI database, and a gene expression data set used to study breast cancer.
The Pitprops data set was used in four of the seven papers we compare to (Zou et
al. [73], Jolliffe et al.[38], Journée et al.[39], and Yuan and Zhang [70]). Five of the
methods used gene expression data from various sources (d’Aspremont et al.[19],
Hein and Biihler [29], Zou et al. [73], Journée et al.[39], and Yuan and Zhang [70]).
A few additional data sets have been studied in these papers, including sets from the
UCI data base, and a number of synthetically generated data sets.

Pitprops The Pitprops data set consists of a 13 x 13 covariance matrix formed from
180 observations of “pit props made of Corsican pine grown in East Anglia” [27].
The variables included measurements such as the diameter and length of the prop,
the number of rings and number of knots. Jeffers [35] attempted to interpret the first
six principal components of this covariance matrix, highlighting the difficulty in such
interpretation, since each component had significant loadings in each dimension. Since
then, a number of papers have performed PCA and variations like SPCA on the data
to create more interpretable results, primarily by generating sparser solutions. Below,

@ Springer

406 L. Berk, D. Bertsimas

we will compare our results to the results from [35] and other SPCA papers to see how
the principal components compare in sparsity and variance explained.

Wine The Wine data set from the UCI database [48] consists of 178 measurements of
13 chemical attributes of wines, with the objective of classifying the wines by origin.
For our work, we ignore the origin categorical variable and just consider the others,
which include variables like alcohol level, color intensity, and acidity. The data set has
been studied primarily for classification problems with redundancy analysis (RDA).

MiniBooNE The MiniBooNE data set from UCI [48] has 130,065 observations of
50 variables, measuring attributes of neutrinos in an experiment meant to distin-
guish electron neutrinos from muon neutrinos. As with the Wine data set, we have
ignored the classification variable, and created both raw and normalized versions of the
problem.

Communities The Communities and Crime data set from UCI [48] originally contained
1994 observations of 128 variables, containing socio-economic data, law enforcement
data, and crime data from 1990 and 1995 across the United States. Categorical variables
and variables not available for the entire data set were removed to produce a set with
101 numeric variables.

Cancer The breast cancer gene expression dataset, originated in papers by Wang et
al. in 2005 and Minn et al. in 2007. The set contains 344 measurements of 22,283
variables.

Since our method assumes centered (mean zero) data, we pre-processed these
datasets by subtracting the empirical mean of each variable from each measurement.
Moreover, we created additional data sets by normalizing the data (so that each vari-
able has unit variance) to see how the algorithms perform on correlation matrices. The
normalized problems are referred to in the reports that follow by prefixing “norm” to
the problem name. Since the Pitprops data is presented as a correlation matrix and the
original data is lost, this distinction is only relevant for the remaining data sets.

5.2 Comparison of solution quality across methods

In Tables 6 and 7, we report the variance explained by the components discovered
by each method, for each problem, with a fixed target sparsity of k = 5 and k =
10, respectively. The values marked by an asterisk represent values that were not
dominated by another method. Where the method by Journée et al. [39] is marked n/a,
there was no parameter choice that resulted in the target sparsity.

The key insight from this analysis is that each of the existing methods fails to find
the optimal solution on at least one data set. Some data sets, like the miniBooNE
set, are easy for all of the methods to solve, while others, like the normalized Wine
problem, and both the original and normalized Communities problem, are not solved
to optimality by most of the methods.

Of the methods considered in this analysis, those by d’ Aspremont et al. and Yuan
and Zhang are most successful in finding solutions to difficult problems, and one of
these two methods was able to solve every problem.

@ Springer

407

Certifiably optimal sparse principal component analysis

uonn[os SIy} AJHUIPI SAWAWOS A[UO SPOYIAU JAYIO JIYM ‘SAsed [[e ur uonnjos [ewndo ay) spuy yDJS-rewndQ ‘senfea [ewndo ajeorpur sysL)Sy

6L8E1Y #15098°% 9815ty E/u 8Y01SY 61629 61629 #1098 101 SepIUMUIIODUION
8850T°0 *689LT°0 *689LT°0 e/u PPEIY0 T6TLTO SIELTO *689LT°0 101 senunwwo)
1198¢% 000006 000006 e/u 000006 866667 L6667 000006 0S HNoogIuAuLIOU
«6OLT896'T x69LTRI6'T x69LTBI6'T «69LT896'T «6OLTBY6'T x6PLTRI6'T x69LTBIET x69LT896'I 0s ANooguIw
TSLIEE £99¢€¥°€ £99¢€¥°€ e/u £99¢¥°€ PES0V'T #8LOEY'E #8LOEY'E €l aurpuLou
#8C10T°66 6£661°66 «I€10T'66 «IE€T0T66 «I€T0T66 «1€10T66 =I€10T66 «IET10T'66 €l QuIm
#S1901°€ #S1907°€ 8STTLT #S1907°€ #S1907°€ #S1907°€ #S1907°€ #S1907°€ €l sdoxdig
lo,] 3ueyz [091'Te loglTe [8el'e [6c] PIund S NEEY vods
[€L] TR 1@ NOZ pue uenx 19 YUBOry 19 QQuInof 19 QyI[[of pue urey juowaidsy,p -rewndQ SUOISUAWI(] 198 eleq

¢ = y Aysxeds yyim suonnjos Aq poure[dxa s3os ejep PLIOM-[Eal JO OUBLIEA 9 3|qel

pringer

As

L. Berk, D. Bertsimas

408

uonn[os Sy} AJNUIPI SSWIAWOS AJUO SPOYIAW JAYIO [IYM

‘sased [[e ur uonnjos rewndo ay) spuy yDJS-TewndQ ‘senfea [ewndo 9jesrpur sYSLIISY

SPE99'L #E1€T8'8 6£081°9 E/u L6L6E'8 #E1€T8'8 ¥8981°L #E1€T8'8 [0l senunuWO)WIou
£6€5€°0 TIEPy’0 #16vPY°0 E/u #1670 99990 167770 167770 101 SAnIUAMITIO])
6815S°L #66666'6 #66666'6 g/u #66666°6 SLSE0'6 $9666'6 #66666°6 0s HANOOFIUAULIOU
«6OLT896'T «6OLTBI6'T «OOLTBI6'T «6OLTBI6'T «6OLT8Y6'T «6OLT8Y6'T «69LT8Y6'T «69LT896'T 0s ANooguIw
162857 T€976'€ #6TP6S Y e/u #6Th6S Y #6Th6S Y #6Th6S Y #6Th6S Y €l aurpuLou
#8L10T°66 8G°661°66 #8L710T°66 #8L710C°66 #8L710C°66 #8L710C°66 x8L710T'66 x8L'10T66 €l QuIm
10111Y S190t°€ 966S1°Y 1yrly 966S1°Y #FITLLY #FITLLY #FITLLY €l sdoxdig
lo,] ueyz [091Te loelTe [8el'e [oc] o1und ENLES vods
[€L] TR 1@ NOZ pue uenx 19 LRIy 19 QQuInof 19 I[[Of pue urey juowaldsy p -fewndQ suorsuawI 198 eleq

01 = ¥ YIIM S1aS BIep PIOM-[eaI U0 Spoyiotl YO JS Aq paute[dxe soueLiep / ajqel

pringer

As

Certifiably optimal sparse principal component analysis 409

Variance of components by sparsity, methods

= = &
- 2
4 ? :_‘(H./
". <A
/]
o
8 ?
g 2 2
o
x
)
‘D /
o
c
K
©
> 27 /) K
11 @
1 3 5 7 9 1 13
Sparsity k
@ 4 methods ‘ Jolliffee Journee
method
Richtarik Zou and Hastie

Fig.3 Variance of Pitprops explained by SPCA methods for various k. Optimal-SPCA, d’ Aspremont et al.,
Hein and Biihler, and Yuan and Zhang are combined into “4 methods” in this plot

Additionally, we ran each method on the Pitprops data set for every sparsity level
k = 1,...,13. The variances explained by the results are reported in Table 8 and
Fig. 3. Optimal-SPCA, d’Aspremont et al., and Yuan and Zhang found the optimal
solution at every sparsity level, and Hein and Biihler succeeded in all but one. The
other methods were far less consistent over the range of sparsity levels.

5.3 Method performance on the computation of multiple sparse principal
components

In the series of experiments reported in Table 9, we observed the performance on
SPCA methods that computed multiple components at once and compared these to
the outcome of applying Optimal-SPCA sequentially. We did not include the methods
by d’ Aspremont et al., Journée et al., or Yuan and Zhang since they did not provide
methods for computing multiple principal components at once, and the implementation
of Hein and Biihler’s method in Mathlab failed to run on the large normMiniBoo
problem. While Optimal-SPCA is guaranteed to maximize the variance explained by
PC1, itdoes not have a statistical guarantee over multiple components. Nonetheless, we
found that the approach of maximizing total variance explained for one component at
a time (see Sect. 2.2) was also effective in maximizing total variance explained across
multiple components.

@ Springer

L. Berk, D. Bertsimas

[9A9] Ayrsxeds yoea Je uonnjos rewndo ay) urelqo ‘yOJS-rewndo Surpnpour ‘spoyjoul 21948 “sanfea [ewndo 9Jed1pul SYSLIAISY

61Ty 61Ty 61Ty 61Ty 61Ty 61T 61Ty *61TY €l
«81CY 81T «81CY «81TY 0cl'y 81T «81TY 81TV 4!
+*80CY %80Ty +*80CY %80Ty ey %80Ty 80Ty %80T’ I
091"y €LY 091y 091'v v €LY €LY *ELT'Y 01
9ll'v A g 9ll'v #*6€1'y 090t 9ll'v #6€1'Y #*6€1'Y 6
x690'% x690'Y S0y #690'Y S0y x690'Y x690'Y %690y 8
ws’e %966°¢C +966'¢ %966°¢C 0r8°¢ %966°¢ %966'¢ %966°¢ L
*ILL'E xILL'E *ILL'E xILL'E *«ILL'E «ILL'E «ILL'E xILL'E 9
x90v'¢ x901'¢ S68°C x901'¢ +x90v'¢ x90v'¢ B x907'¢ S
£88°C xL€6'C 6v$'C xL€6'C *L€6'C xL€6'C *L€6'C xL€6'C 14
6CE'C *SLY'C LLOC ¥0C'C 7881 %*SLY'C «SLY'C %*SLY'C €
#7561 #7561 180°1 €18l 6L9'1 «7S6°1 #7561 x7S6'1 [
0001 %0001 0001 0001 VN x000°T 0001 «000°1 !
[67]
[FANLES] [0L] Sueyz [09] T2 30 le€] e 1 [8€] TR0 Joung l61]Te 19 VOodS

noz pue ueng NuBIgory sguinof By pue uro yuowraidsy ,.p -reundQ 3

410

% SnoOLIBA J0J spoylouwl DS Aq paurejdxs sdoidyid jo aouerrep g ajqel

pringer

As

Certifiably optimal sparse principal component analysis 411

Table 9 Variance of Pitprops explained by SPCA methods across the first three components for k = 5

Data set Adj Optimal- Hein and Jolliffe Richtdrik Zou
Variance SPCA Biihler et al. [38] et al. [60] etal.[73]
of: [29]
Pitprops PC1 3.40615 3.40615 2.66602 3.40615 3.27020
Pitprops PC2 2.15779 1.94730 2.02014 1.23414 1.97907
Pitprops PC3 1.90637 2.07497 1.94153 0.00176 2.11999
Pitprops Total 7.47032 7.42842 6.62769 4.64205 7.36925
normWine PC1 3.43978 3.43663 3.01445 3.43978 3.01516
normWine PC2 2.38627 2.37488 2.23001 0.00000 2.23558
normWine PC3 2.09970 1.80185 1.84457 0.01496 1.82003
normWine Total 7.92575 7.61336 7.08904 3.45473 7.07077
normMiniBoo PCI1 5.00000 N/A* 1.48050 5.00000 3.97389
normMiniBoo PC2 5.00000 N/A* 1.37906 0.00000 2.27701
normMiniBoo PC3 4.99999 N/A* 1.28584 1.75260 1.29458
normMiniBoo Total 15.00000 N/A* 4.14540 6.75260 7.54549

In each case, Optimal-SPCA obtains the highest total variance explained

Since the principal components in SPCA are not necessarily orthogonal, the com-
putation of marginal variance explained by subsequent components, as well as total
variance explained, must be computed carefully. Following the approach of Zou et
al.[73], we compute the variance explained by subsequent components by projecting
the components into the subspace of the data perpendicular to preceding components.

5.4 Comparison of run times across methods

On each of the datasets used for testing in Sect. 5.2, we also ran timed tests of each
algorithm, five times each. In Table 10 we report the average run time in seconds of
each method on each dataset. It should be noted that the run-times are impacted both
by the algorithmic complexity of the methods and by the underlying performance of
the coding languages. We wrote Optimal-SPCA in the Julia language, which has a
run-time advantage over R (Jolliffe et al., Zou et al.) and Matlab (d’ Aspremont et al.,
Hein and Biihler, Richtarik et al.) [18].

Two findings are notable. First, Optimal-SPCA identifies the optimal solution to
the SPCA problem within the time frame of the existing algorithms. Second, Optimal-
SPCA proves optimality for small k£ in seconds, and slightly larger k in minutes. For
problems with small k, Optimal-SPCA scales similarly to Yuan and Zhang, which
lies within it. For more complex problems, Optimal-SPCA spends significantly more
time refining upper bounds on the large space of supports in order to prove optimality.
While the time to provable optimality does not scale as well with &, the time until
the optimal solution is found as a feasible solution remains competitive with other
algorithms. This suggests Optimal-SPCA can be beneficial for higher k£ problems
with early termination.

@ Springer

L. Berk, D. Bertsimas

412

sworqoxd

1s981e] Y 10J 9[qeIoRH) [[NS I sowr) oY) ‘1oduo] Apueoyrudis soye) Aiewndo Suiaord ySnoyy spoylow Y10 PIM 2ANNdWwos dwm € ur UonN[os 9[qIsea] 1s9q oY) spuy yOJS-rewndo

LT1°0 €600 068°S 0¢s's $66'¢€ 0800 6LE°0 €01°0 Yree 01 101 SepIUNWOHWIou
9210 9600 £68°S 1ess Il SLOO S9¢°0 S01°0 £6¢°0 S 101 SeRIUNWWOHWIOU
LETO YIT°0 9¢1'9 018’S Pl 860°0 YLEO 101°0 000°L91 01 101 SonIUNWIWO)
STro ¥91°0 LT6'S 9¢9°¢ 01s°¢ 7900 8LE0 89L°0 6L1'8 S 101 SonIUNWIWO)
LTI0 180°0 008°S01 0609 00T°¢l 000C €1€0 6900 1L0°0 01 0s oogIuryuLIou
0210 800 €9T°L01 §TT9 668°C¢ £60'1 L1€0 €L0°0 9L0°0 S 0S oogruryuLIou
I1°0 LLOO 002901 woLs 000°€S 906'0 0T€0 ¥90°0 ¥90°0 01 0S oogruru
cIro 8L0°0 °L9'so1 808'S $0T°01 008°0 (431} 1900 290°0 S 0S oogruru
8600 LY0°0 080 01¢'S 11°0 6¥0°0 9€T0 0500 SLOO 01 €1 SurpuLou
S01°0 8¥0°0 $08°0 60S°S 881°0 7900 0¥To 9500 L90°0 S €1 durpuLou
¥60°0 70°0 818°0 01¢'S 6800 150°0 8¥T°0 w00 £v0°0 01 €1 QuIM
010 500 €680 80S°¢S L60°0 150°0 [SyA) €500 950°0 S €1 QUIM
01°0 LY0'0 16L°0 01¢°'S €0€°0 9¥0°0 £€T0 1500 9¢1°0 01 €1 sdoxdyg
€01°0 1S0°0 98L°0 LOS'S o w00 0ST0 1210 8S1°0 S €l sdoxdig

J[qIsesy rewmndo

[0L] Sueyz [09] Te % [oclTere [geler [6C]1oMUng [61]TE ¥ —VodS —VodS
[¢L]°Te 12 noz pue ueng DIRAIRING JguInof pIof pue urey JuowdIdsy p -rewndQ -rewndQ Y SuoISuSWI([jaselR(

S1osBIRp PIIOM-[ERI UO SPOYIoWl DS JO (S ur) sown-uny QL ajqel

pringer

As

Certifiably optimal sparse principal component analysis 413

5.5 Tractability of Optimal-SPCA compared to exact solutions from non-convex
solvers

Optimal-SPCA is not the only way to compute exact solutions to SPCA-MIO. We could
also send the problem to a solver designed to handle non-convex mixed integer non-
linear programs. We chose to work with Couenne [49] (which stands for Convex Over
and Under ENvelopes for Nonlinear Estimation), an open-source solver published by
the COIN-OR community. Couenne reformulates problems in order to identify upper
bounds, and uses a combination of branch-and-bound, heuristic, and branching tech-
niques that can be customized and augmented. For our experiment, we formulated
SPCA-MIO using Julia and JuMP [24] and called Couenne with the AmpINLWriter
package in Julia. We used the default options for heuristics and branching procedures
in the software.

In Table 11, we report on the run-times of Couenne compared to Optimal-
SPCA on our sample of real-world problems, running each algorithm until the
optimality gap (upper bound divided by lower bound) was less than 0.01, or
until an hour had passed. For larger problems, Couenne did not prove optimality
in under an hour, and in these cases we reported the remaining optimality gap.
Optimal-SPCA, on the other hand, proved optimality in under an hour in every
case, while Couenne took considerably longer, and often did not prove optimal-
ity in an hour. When Couenne did prove optimality, it needed to explore more
nodes in the problem tree, and did so with more time spent exploring each node.
Because of these differences, we do not consider solving SPCA-MIO with a gen-
eral purpose solver to be tractable, while Optimal-SPCA is tractable even for large
problems.

We believe the significant differences here are due to the inability for Couenne
to identify reasonable feasible solutions and tight upper bounds. The advantages of
SPCA-MIO are that we use a powerful heuristic to generate lower bounds (inspired
by Yuan and Zhang [70]), and take advantage of algebraic structure for upper bounds
that are not considered as part of Couenne’s process of setting bounds.

5.6 Scaling of Optimal-SPCA for large scale datasets

In this set of experiments, we generated problems of various sizes by selecting random
sets of various dimensions from the Cancer dataset and the Micromass dataset, and
running Optimal-SPCA with £ = 5 on each problem. We terminated the algorithm
after five hours if it had not completed. In Table 12, we report average results over 100
experiments performed for each problem size. The columns “Portion Proved in 1h” and
“Portion Proved in 5h” document the percent of experiments in which Optimal-SPCA
was able to prove optimality within 1h and 5 h respectively.

These experiments show that Optimal-SPCA can be used to solve problems and
prove optimality in most cases for up to 10, 000 dimensions. We also conclude that
Optimal-SPCA can return optimal solutions reliably, even when the algorithm does
not have enough time to prove optimality. This suggests that Optimal-SPCA can be
used to great effect even on the largest problems, generating optimal solutions in short

@ Springer

414

L. Berk, D. Bertsimas

Table 11 Performance of Optimal-SPCA and Couenne on SPCA-MIO

Dataset k Optimal-SPCA Couenne

Explored Time Gap Explored Time Gap
Pitprops 5 6 0.079 - 993,683 1528.020 -
Pitprops 10 17 0.141 - 1,562,100 >1h 323%
Wine 5 2 0.054 - 204 1.420 -
Wine 10 2 0.047 - 18,738 44.220 -
normWine 5 4 0.049 - 612,615 951.300 -
normWine 10 6 0.049 - 512,639 >1h 294%
miniBoo 5 2 0.060 - 128 9.390 -
miniBoo 10 2 0.060 - 1600 32.120 -
normMiniBoo 5 2 0.063 - 89,000 >1h 31,771%
normMiniBoo 10 2 0.079 - 75,900 >1h 18,559%
Communities 5 23,779 12.870 - 13,800 >1h 485%
Communities 10 498,309 338.950 - 12,500 >1h 44,522%
normCommunities 5 39 0.180 - 23,300 >1h 211,018%
normCommunities 10 593 0.726 - 23,100 >1h 00

Despite solving the same formulation of the problem, the solver Couenne takes hundreds of times longer
than Optimal-SPCA to converge and explores much more of the enumeration tree to identify the optimal

solution

Table 12 Optimal-SPCA is able to find optimal solutions and prove optimality in several hours for the
largest real-world problems, and on some data sets converges in even less time

Dataset Dimensions Time (sec) Time (sec) Portion Portion
to best to prove proved in proved in
solution optimality 1h Sh

Cancer 50 1.52 1.57 1.00 1.00

Cancer 100 4.25 4.75 1.00 1.00

Cancer 250 5.92 41.80 1.00 1.00

Cancer 500 7.97 61.27 0.97 0.97

Cancer 750 10.29 126.91 0.96 0.96

Cancer 1000 15.21 429.44 0.96 0.99

Cancer 2500 105.17 751.24 091 0.96

Cancer 5000 353.47 424.83 0.94 0.94

Cancer 10,000 1448.80 1595.40 1.00 1.00

Micromass 50 0.30 0.32 1.00 1.00

Micromass 100 0.09 0.09 1.00 1.00

Micromass 250 0.21 0.22 1.00 1.00

Micromass 500 0.49 0.58 1.00 1.00

Micromass 750 0.85 0.97 1.00 1.00

Micromass 1000 1.94 2.11 1.00 1.00

@ Springer

Certifiably optimal sparse principal component analysis 415

periods of time, even if it cannot quickly provide a certificate of optimality. In the
next section we further explore the quality of solutions achievable by Optimal-SPCA
under short time limits.

5.7 Quality of feasible solutions with early termination in high dimensions

As we have seen, Optimal-SPCA typically establishes the correct lower bound long
before the upper bound is tightened. That is, it discovers the optimal solution in
much less time than it takes to prove optimality. Because of this, we have confidence
that this algorithm can be used on even larger data sets, or in more time-constrained
applications, simply by setting a time limit and taking the best solution at the end of
that period, instead of running to optimality. Alternatively, the acceptable optimality
gap (the difference between upper and lower bounds) can be widened to save run-time
without sacrificing the quality of the final solution.

As problem sizes scale, many of the methods we have discussed will fail to finish
in 1 or even 10 minutes, even with the fewest number of iterations. We will focus
our attention on comparing our method to Yuan and Zhang [70], which is the fastest
of the existing methods and most reliable at high dimensions. In these experiments,
we selected a subset of the variables in the Cancer data set and ran both Yuan and
Zhang and Optimal-SPCA with a time limits of 1 min, 10min, and 1h. We reported
the algorithms as having tied if they resulted in variances explained within 0.001% of
one another, otherwise we reported which algorithm dominated.

We see in Table 13 that both methods returned the same result in most cases. The
portion of the time that each algorithm outperformed the another was comparable. This
demonstrates that Optimal-SPCA, in addition to providing provable optimality in the
long-run, provides results through the early stopping heuristic that are competitive
with even the fastest algorithms at large scale.

5.8 Conclusions for computation

In these experiments, we have shown that Optimal-SPCA, uniquely among SPCA
algorithms, provides the provably optimal solution to the problem in finite time. By
tuning the algorithm’s parameters to suit the problem and experimental priorities,
Optimal-SPCA is competitive with existing algorithms in run-time. For large-scale
problems where many methods fail to find a solution in tractable time, an early-
terminated Optimal-SPCA offers solutions typically of equal or higher quality than
the most scalable methods.

We believe these experiments demonstrate that Optimal-SPCA is suitable for gen-
eral use on both small and large scale problems, produces similar or superior solutions
to other methods, and is the only method guaranteed to return optimal solutions in
finite time.

@ Springer

416 L. Berk, D. Bertsimas

Table 13 Yuan and Zhang and Optimal-SPCA are competitive for finding feasible solutions on high-
dimensional subsets of the Cancer dataset

Dim Time (s) Experiments dominated by
Optimal-SPCA (%) Yuan and Zhang (%) Tie (%)

50 60 0.5 1.0 98.5
100 60 2.5 2.0 95.5
250 60 2.3 1.0 96.7
500 60 1.0 1.0 98.0
750 60 0.8 0.3 99.0
1000 60 0.5 1.0 98.5
50 600 2.0 1.3 96.7
100 600 0.5 1.0 98.5
250 600 1.3 0.8 98.0
500 600 1.0 0.8 98.2
750 600 1.3 0.5 98.2
1000 600 1.3 0.8 98.0
50 3600 1.3 1.0 97.7
100 3600 2.5 3.0 94.5
250 3600 1.5 0.8 97.7
500 3600 1.5 0.5 98.0
750 3600 1.8 0.8 97.5
1000 3600 1.5 0.8 97.8

6 Conclusions

In this paper, we have derived an algorithm, or rather a class of algorithms, for solv-
ing the sparse principal component analysis problem to optimality. The algorithm
proves optimality and allows direct control of sparsity, while remaining computa-
tionally tractable for large problems. There are many possibilities for computational
improvements to these algorithms. It is possible that more careful storage and account-
ing of existing nodes, reuse of eigenvalues found in the tree as warm starts for lower
nodes, and other ideas can continue to reduce run-times and make a branch-and-bound
approach even more appealing for solving SPCA. Generally, this work demonstrates
the applicability of discrete optimization techniques to problems in statistics and
machine learning that have historically and primarily been tackled using continuous
optimization techniques. This paper adds to a growing number of works that provide
tractable discrete optimization approaches to machine learning problems and improve
solution quality over existing methods.

A Overview of the Optimal-SPCA implementation in Julia

The linked repository contains an implementation of Optimal-SPCA written in Julia
0.6.0. The latest version of this software is available on GitHub at https://github.

@ Springer

https://github.com/lauren897/Optimal-SPCA

Certifiably optimal sparse principal component analysis 417

com/lauren897/Optimal-SPCA. The Algorithm directory contains the Julia files that
comprise the algorithm, and the Data directory contains an example dataset.

In order to run this software, you must install a recent version of Julia from http://
julialang.org/downloads/. The most recent version of Julia at the time this code was
last tested before publication was Julia 0.6.0.

Two packages must be installed in Julia before the code can be run. These
packages are DataFrames, and StatsBase. They can be added by running
Pkg.add (“DataFrames”) and Pkg.add (“StatsBase”) respectively.

At this point, the file test . j1 should run successfully. To run the script, navigate
to the Algorithm directory, and run include (“test.j1l”). The script will run
Optimal-SPCA on the Pitprops dataset, and then generate an additional random prob-
lem and run the algorithm on that problem. It will then identify the first few sparse
principal components using Optimal-SPCA sequentially and reporting the cumulative
variance explained.

The key method used in the algorithm is is branchAndBound. It takes two
required arguments: prob, and k. The variable prob uses a custom type that holds
the original data as well as the covariance matrix associated with the problem. (If
data is not available, the Cholesky factorization of the covariance matrix will suffice.)
The data is presented in an m x n array, with m data points in n dimensions. The
corresponding covariance matrix is n x n. The parameter k is a positive integer less
than n and represents the desired sparsity.

By default, branchAndBound solves the problem and returns the objective func-
tion value, solution vector, and a few performance metrics, including time elapsed and
the number of nodes explored. There are many optional parameters, some of which
are discussed in detail in our paper. Other parameters have to do with technical aspects
of the algorithm, like convergence criteria and resizing arrays. These are commented
on in detail in the branchAndBound. j1 file where the function is defined.

References

1. Amini, A.A., Wainwright, M.J.: High-dimensional analysis of semidefinite relaxations for sparse prin-
cipal components. In: IEEE International Symposium on Information Theory, pp. 2454-2458. IEEE
(2008)

2. Asteris, M., Papailiopoulos, D., Kyrillidis, A., Dimakis, A.G.: Sparse PCA via bipartite matchings. In:
Advances in Neural Information Processing Systems, pp. 766-774 (2015)

3. Bair, E., Hastie, T., Paul, D., Tibshirani, R.: Prediction by supervised principal components. J. Am.
Stat. Assoc. 101(473), 119-137 (2006)

4. Beck, A., Vaisbourd, Y.: The sparse principal component analysis problem: optimality conditions and
algorithms. JO Optim. Theory Appl. 170(1), 119-143 (2016)

5. Bennett, K.P., Parrado-Hernandez, E.: The interplay of optimization and machine learning research. J.
Mach. Learn. Res. 7, 1265-1281 (2006)

6. Bertsimas, D., Copenhaver, M.S.: Characterization of the equivalence of robustification and regular-
ization in linear and matrix regression. Eur. J. Oper. Res. 270, 931-942 (2017)

7. Bertsimas, D., Copenhaver, M.S., Mazumder, R.: Certifiably optimal low rank factor analysis. J. Mach.
Learn. Res. 18(29), 1-53 (2017)

8. Bertsimas, D., Dunn, J.: Optimal classification trees. Mach. Learn. 64(1), 1-44 (2017)

9. Bertsimas, D., King, A.: An algorithmic approach to linear regression. Oper. Res. 64(1), 2-16 (2016)

10. Bertsimas, D., King, A., Mazumder, R., et al.: Best subset selection via a modern optimization lens.
Ann. Stat. 44(2), 813-852 (2016)

@ Springer

https://github.com/lauren897/Optimal-SPCA
http://julialang.org/downloads/
http://julialang.org/downloads/

418

L. Berk, D. Bertsimas

11.

13.
14.

15.

16.

18.
19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

39.

40.

Bertsimas, D., Shioda, R.: Classification and regression via integer optimization. Oper. Res. 55(2),
252-271 (2007)

. Bixby, R.E.: A brief history of linear and mixed-integer programming computation. Doc. Math. Extra

Volume: Optimization Stories, 107-121 (2012)

Candes, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 11 (2011)
Carrizosa, E., Guerrero, V.: rs-Sparse principal component analysis: a mixed integer nonlinear pro-
gramming approach with VNS. Comput. Oper. Res. 52, 349-354 (2014)

Chamberlain, G., Rothschild, M.J.: Arbitrage, factor structure, and mean-variance analysis on large
asset markets. Econometrica 51, 1281-1304 (1983)

Chan, S.O., Papailiopoulos, D., Rubinstein, A.: On the worst-case approximability of sparse PCA.
arXiv preprint arXiv:1507.05950 (2015)

. Chen, Y., Jalali, A., Sanghavi, S., Xu, H.: Clustering partially observed graphs via convex optimization.

J. Mach. Learn. Res. 15(1), 2213-2238 (2014)

Computing, J.: Julia micro-benchmarks (2018). https://julialang.org/benchmarks/

d’Aspremont, A., Bach, F., Ghaoui, L.E.: Optimal solutions for sparse principal component analysis.
J. Mach. Learn. Res. 9, 1269-1294 (2008)

d’Aspremont, A., El Ghaoui, L., Jordan, M.I., Lanckriet, G.R.: A direct formulation for sparse PCA
using semidefinite programming. STAM Rev. 49(3), 434-448 (2007)

Deluzio, K., Astephen, J.: Biomechanical features of gait waveform data associated with knee
osteoarthritis: an application of principal component analysis. Gait Posture 25(1), 86-93 (2007)
Ding, C., He, X.: K-means clustering via principal component analysis. In: Proceedings of the twenty-
first international conference on Machine learning, Banff, Alberta, Canada, 04-08 July 2004, p. 29.
ACM, New York (2004). https://doi.org/10.1145/1015330.1015408

Du, Q., Fowler, J.E.: Hyperspectral image compression using jpeg2000 and principal component
analysis. IEEE Geosci. Remote Sens. Lett. 4(2), 201-205 (2007)

Dunning, I., Huchette, J., Lubin, M.: JuMP: a modeling language for mathematical optimization. SIAM
Rev. 59(2), 295-320 (2017). https://doi.org/10.1137/15M 1020575

Gurobi Optimization Inc.: Gurobi 7.0 performance benchmarks. http://www.gurobi.com/pdfs/
benchmarks.pdf (2015). Accessed 17 Dec 2016

Gurobi Optimization Inc.: Gurobi optimizer reference manual (2017). http://www.gurobi.com

Hand, D.J., Daly, F., McConway, K., Lunn, D., Ostrowski, E.: A Handbook of Small Data Sets, vol.
1. CRC Press, Boca Raton (1993)

Hastie, T., Tibshirani, R., Wainwright, M.: Statistical Learning with Sparsity: The Lasso and General-
izations. CRC Press, Boca Raton (2015)

Hein, M., Biihler, T.: An inverse power method for nonlinear eigenproblems with applications in
1-spectral clustering and sparse PCA. In: Advances in Neural Information Processing Systems, pp.
847-855 (2010)

Hotelling, H.: Relations between two sets of variates. Biometrika 28(3/4), 321-377 (1936)

Hsu, Y.L., Huang, P.Y., Chen, D.T.: Sparse principal component analysis in cancer research. Transl.
Cancer Res. 3(3), 182 (2014)

IBM: IBM ILOG CPLEX User’s manual (2017). https://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/

Iezzoni, A.F.,, Pritts, M.P.: Applications of principal component analysis to horticultural research.
HortScience 26(4), 334-338 (1991)

Iguchi, T., Mixon, D.G., Peterson, J., Villar, S.: Probably certifiably correct k-means clustering. Math.
Program. 165(2), 605-642 (2017)

Jeffers, J.N.: Two case studies in the application of principal component analysis. Appl. Stat. 16(3),
225-236 (1967)

Jolliffe, I.T.: Rotation of principal components: choice of normalization constraints. J. Appl. Stat.
22(1), 29-35 (1995)

Jolliffe, I.T.: Principal Component Analysis. Wiley, London (2002)

. Jolliffe, I.T., Trendafilov, N.T., Uddin, M.: A modified principal component technique based on the

LASSO. J. Comput. Graph. Stat. 12(3), 531-547 (2003)

Journée, M., Nesterov, Y., Richtérik, P., Sepulchre, R.: Generalized power method for sparse principal
component analysis. J. Mach. Learn. Res. 11, 517-553 (2010)

Kaiser, H.F.: The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3), 187—
200 (1958)

@ Springer

http://arxiv.org/abs/1507.05950
https://julialang.org/benchmarks/
https://doi.org/10.1145/1015330.1015408
https://doi.org/10.1137/15M1020575
http://www.gurobi.com/pdfs/benchmarks.pdf
http://www.gurobi.com/pdfs/benchmarks.pdf
http://www.gurobi.com
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Certifiably optimal sparse principal component analysis 419

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.
64.

65.

66.
67.

68.

Kumar, V., Kanal, L.N.: Parallel branch-and-bound formulations for and/or tree search. IEEE Trans.
Pattern Anal. Mach. Intell. 42(6), 768-778 (1984)

Labib, K., Vemuri, V.R.: An application of principal component analysis to the detection and visual-
ization of computer network attacks. Annales des Telecommunications/Ann. Telecommun. 61(1-2),
218-234 (2006)

Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Economet-
rica 28, 497-520 (1960)

Lee, S., Epstein, M.P,, Duncan, R., Lin, X.: Sparse principal component analysis for identifying
ancestry-informative markers in genome-wide association studies. Genet. Epidemiol. 36(4), 293-302
(2012)

Lee, Y.K., Lee, E.R., Park, B.U.: Principal component analysis in very high-dimensional spaces. Stat.
Sin. 22(1), 933-956 (2012)

Leng, C., Wang, H.: On general adaptive sparse principal component analysis. J. Comput. Graph. Stat.
18(1), 201-215 (2009)

Li, G.J., Wah, B.W.: Coping with anomalies in parallel branch-and-bound algorithms. IEEE Trans.
Comput. 100(6), 568-573 (1986)

Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

Lougee-Heimer, R.: The common optimization interface for operations research. IBM J. Res. Dev.
47(1), 57-66 (2003)

Luss, R., Teboulle, M.: Conditional gradient algorithms for rank-one matrix approximations with a
sparsity constraint. SIAM Rev. 55(1), 65-98 (2013)

Ma, Z., et al.: Sparse principal component analysis and iterative thresholding. Ann. Stat. 41(2), 772-801
(2013)

Mangasarian, O.L.: Exact 1-norm support vector machines via unconstrained convex differentiable
minimization. J. Mach. Learn. Res. 7, 1517-1530 (2006)

Mazumder, R., Radchenko, P., Dedieu, A.: Subset selection with shrinkage: sparse linear modeling
when the snr is low. arXiv preprint arXiv:1708.03288 (2017)

Moghaddam, B., Weiss, Y., Avidan, S.: Spectral bounds for sparse PCA: Exact and greedy algorithms.
In: Advances in Neural Information Processing Systems, pp. 915-922 (2005)

Nemhauser, G.L.: Integer Programming: the Global Impact. Presented at EURO, INFORMS, Rome,
Italy, 2013. http://euro-informs2013.org/data/http_/euro2013.org/wp-content/uploads/nemhauser.
pdf (2013). Accessed 9 Sept 2015

Papailiopoulos, D.S., Dimakis, A.G., Korokythakis, S.: Sparse PCA through low-rank approximations.
ICML 3, 747-755 (2013)

Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In:
Advances in Kernel Methods: Support Vector Learning, pp. 185-208. MIT Press, Cambridge (1999)
Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., Reich, D.: Principal com-
ponents analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38(8),
904-909 (2006)

Richman, M.B.: Rotation of principal components. J. Climatol. 6(3), 293-335 (1986)

Richtdrik, P., Taka¢, M., Ahipasaoglu, S.D.: Alternating maximization: unifying framework for 8 sparse
PCA formulations and efficient parallel codes. arXiv preprint arXiv:1212.4137 (2012)

Scott, D.S.: On the accuracy of the Gerschgorin circle theorem for bounding the spread of a real
symmetric matrix. Linear Algebra Appl. 65, 147155 (1985)

Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms.
Adyv. Neural Inf. Process. Syst. 25, 2960-2968 (2012)

Sra, S., Nowozin, S., Wright, S.J.: Optimization for Machine Learning. MIT Press, Cambridge (2012)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.)
58(1), 267-288 (1996)

Top500 Supercomputer Sites: performance development. http://www.top500.org/statistics/perfdevel/
(2016). Accessed 17 Dec 2016

Wilkinson, J.H.: The Algebraic Eigenvalue Problem, vol. 87. Clarendon Press, Oxford (1965)
Witten, D., Tibshirani, R., Hastie, T.: A penalized matrix decomposition, with applications to sparse
principal components and canonical correlation analysis. Biostatistics 10(3), 515-534 (2009)

Witten, D.M., Tibshirani, R.J.: Extensions of sparse canonical correlation analysis with applications
to genomic data. Stat. Appl. Genet. Mol. Biol. 8(1), 1-27 (2009)

@ Springer

http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1708.03288
http://euro-informs2013.org/data/http_/euro2013.org/wp-content/uploads/nemhauser.pdf
http://euro-informs2013.org/data/http_/euro2013.org/wp-content/uploads/nemhauser.pdf
http://arxiv.org/abs/1212.4137
http://www.top500.org/statistics/perfdevel/

420

L. Berk, D. Bertsimas

69.

70.

71.

72.

73.

Yanover, C., Meltzer, T., Weiss, Y.: Linear programming relaxations and belief propagation—an empir-
ical study. J. Mach. Learn. Res. 7, 1887-1907 (2006)

Yuan, X.T., Zhang, T.: Truncated power method for sparse eigenvalue problems. J. Mach. Learn. Res.
14, 899-925 (2013)

Zeng, Z.Q., Yu, H.B., Xu, HR., Xie, Y.Q., Gao, J.: Fast training support vector machines using
parallel sequential minimal optimization. In: 3rd International Conference on Intelligent System and
Knowledge Engineering, 2008, vol. 1, pp. 997-1001. ISKE 2008. IEEE (2008)

Zhang, Y., Ghaoui, L.E.: Large-scale sparse principal component analysis with application to text data.
In: Advances in Neural Information Processing Systems, vol. 24, pp. 532-539 (2011)

Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15(2),
265-286 (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	Certifiably optimal sparse principal component analysis
	Abstract
	1 Introduction
	1.1 Review of literature
	1.2 Motivation for L0-constrained SPCA over other formulations
	1.3 Our approach
	1.4 Structure
	1.5 Notation

	2 A branch-and-bound algorithm for SPCA
	2.1 Introduction to Algorithm1: Optimal-SPCA
	2.2 A note on subsequent components

	3 Linear algebra bounds for SPCA with partially-determined support
	3.1 A useful truncation routine
	3.2 An upper bound from eigenvalues
	3.3 An upper bound from the matrix trace
	3.4 An upper bound from the Gershgorin Circle Theorem
	3.5 A lower bound from eigenvalues
	3.6 A lower bound from Yuan and Zhangyuan2013truncated
	3.7 Collecting upper and lower bounds

	4 Computational tactics
	4.1 Choosing nodes: best-first versus depth-first
	4.2 Choosing dimensions: random, fixed, and adaptive
	4.3 Feasibility versus optimality: de-emphasizing lower bounds
	4.4 Computing eigenvalues and eigenvectors

	5 Computational results
	5.1 Description of data sources
	5.2 Comparison of solution quality across methods
	5.3 Method performance on the computation of multiple sparse principal components
	5.4 Comparison of run times across methods
	5.5 Tractability of Optimal-SPCA compared to exact solutions from non-convex solvers
	5.6 Scaling of Optimal-SPCA for large scale datasets
	5.7 Quality of feasible solutions with early termination in high dimensions
	5.8 Conclusions for computation

	6 Conclusions
	A Overview of the Optimal-SPCA implementation in Julia
	References

