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Abstract
We present DFO-GN, a derivative-free version of the Gauss–Newton method for solv-
ing nonlinear least-squares problems. DFO-GN uses linear interpolation of residual
values to build a quadratic model of the objective, which is then used within a typical
derivative-free trust-region framework. We show that DFO-GN is globally conver-
gent and requires at mostO(ε−2) iterations to reach approximate first-order criticality
within tolerance ε. We provide an implementation of DFO-GN and compare it to
other state-of-the-art derivative-free solvers that use quadratic interpolation models.
We demonstrate numerically that despite using only linear residual models, DFO-GN
performs comparably to these methods in terms of objective evaluations. Furthermore,
as a result of the simplified interpolation procedure, DFO-GN has superior runtime
and scalability. Our implementation of DFO-GN is available at https://github.com/
numericalalgorithmsgroup/dfogn (https://doi.org/10.5281/zenodo.2629875).
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1 Introduction

Over the last 15–20 years, there has been a resurgence and increased effort devoted
to developing efficient methods for derivative-free optimization (DFO)—that is, opti-
mizing an objective using only function values. These methods are useful to many
applications [9], for instance, when the objective function is a black-box function or
legacy code (meaningmanual computation of derivatives or algorithmic differentiation
is impractical), has stochastic noise (so finite differencing is inaccurate) or expensive
to compute (so the evaluation of a full n-dimensional gradient is intractable). There are
several popular classes ofDFOmethods, such as direct andpattern search,model-based
and evolutionary algorithms [11,17,24,28]. Here, we consider model-based methods,
which capture curvature in the objective well [11] and have been shown to have good
practical performance [20].

Model-based methods typically use a trust-region framework for selecting new
iterates, which ensures global convergence, provided we can build a sufficiently accu-
rate model for the objective [5]. The model-building process most commonly uses
interpolation of quadratic functions, as originally proposed by Winfield [36] and later
developed byConn, Scheinberg andToint [6,10] and Powell [23,25]. Another common
choice for model-building is to use radial basis functions [22,34]. Global convergence
results exist in both cases [8,9,35]. Several codes for model-based DFO are available,
including those by Powell [39] and others (see e.g. [9,11] and references therein).

Summary of contributions In this work, we consider nonlinear least-squares mini-
mization, without constraints in the theoretical developments but allowing bounds in
the implementation. Model-based DFO is naturally suited to exploit problem struc-
ture, and in this work we propose a method inspired by the classical Gauss–Newton
method for derivative-based optimization (e.g. [21, Chapter 10]). This method, which
we call DFO-GN (Derivative-FreeOptimization usingGauss–Newton), constructs lin-
ear interpolants for each residual, requiring exactly n+1 points on each iteration,1 and
yielding an approximate quadratic local model for the least-squares objective. This
approach was considered by the framework of Zhang, Conn and Scheinberg [38], but
their numerical results rely on (partial or full) quadratic local models for each residual.
In addition to proving theoretical guarantees for DFO-GN in terms of global conver-
gence and worst-case complexity, we provide an implementation that is a modification
of Powell’s BOBYQA [29] which we extensively test and compare with existing state
of the art DFO solvers. Our numerical results show that little to nothing is lost by our
simplified approach in terms of algorithm performance on a given evaluation budget,
when applied to smooth and noisy, zero- and non-zero residual problems. Furthermore,
significant gains are made in terms of reduced computational cost of the interpolation
problem and memory costs of storing the models. Thus DFO-GN exhibits improved
scalability compared to methods using quadratic residual models, althoughmore work
is needed to match the scalability of derivative-based methods. When the high compu-
tational cost of evaluations is more of a concern than scalability, DFO-GN still offers
the advantage of a reduced evaluation cost for the initialization, again due to choosing

1 This implies that the evaluation cost is then n + 1 evaluations of each residual for the initialization, and
O(1) such evaluations on subsequent iterations.

123



A derivative-free Gauss–Newton method 633

a smaller interpolation set, without loss in overall performance. For these reasons, this
paper advocates for the use of linear residual models for nonlinear least-squares prob-
lems in a derivative-free setting, and provides a theoretically-justified and practical
implementation to achieve this.

Relevant existing literature An early work in this direction is [30], which uses linear
models interpolated using the last n + 1 iterates, but it has no globalization mecha-
nism (trust region, linesearch, etc.) and no convergence guarantees. More recently, in
[38], each residual function is approximated by a quadratic interpolating model, using
function values from p ∈ [n + 1, (n + 1)(n + 2)/2] points. A quadratic model for
the overall least-squares objective is built from the models for each residual function,
that takes into account full quadratic terms in the models asymptotically but allows
the use of simpler models early on in the run of the algorithm. The DFBOLS imple-
mentation in [38], which, strictly speaking, does not allow linear models (requiring
n+2 ≤ p ≤ (n+1)(n+2)/2), is shown to perform better than Powell’s BOBYQA on
a standard least-squares test set; only results for the choice p = 2n + 1 are presented
in [38]. A quadratic asymptotic convergence rate for zero-residual problems is proved
for this framework in [37]. We note that BOBYQA is for general minimization and
uses a quadratic model for the objective with the same requirement on p as DFBOLS,
namely n + 2 ≤ p ≤ (n + 1)(n + 2)/2.

A similar derivative-free framework for nonlinear least-squares problems is
POUNDERS by Wild [33], which constructs adaptive interpolation models for each
residual, dependingon the number of points and evaluations available, and incorporates
all of these residual models into the objective’s model on each iteration. More specif-
ically, at each iteration it constructs models using n + 1 ≤ p ≤ pmax points, where p
is chosen dynamically at each iteration and where pmax ∈ [n + 2, (n + 1)(n + 2)/2]
is a user input. Since the model for each residual is based on a minimum Frobenius
change to the model Hessian, POUNDERS essentially uses linear models in at least
its first iteration, and once p > n + 1 on some iteration, quadratic models are con-
structed and used for that and all subsequent iterations. In its implementation, it allows
parallel computation of each residual component, and accepts previously-computed
evaluations as an input, thus providing extra information to the solver.

We also note the connection to [3],which considers aLevenberg–Marquardtmethod
for nonlinear least-squares when gradient evaluations are noisy; the framework is that
of probabilistic local models, and it uses a regularization parameter rather than trust
region to ensure global convergence. The algorithm is applied and further developed
for data assimilation problems, with careful quantification of noise and algorithm
parameters. Using linear vector models for objectives which are a composition of a
(possibly nonconvex) vector function with a (possibly nonsmooth) convex function,
such as a sum of squares, was also considered in [12]. There, worst-case complexity
bounds for a general model-based trust-region DFOmethod applied to such objectives
are established. Our approach differs in that it is designed specifically for nonlinear
least-squares, and uses an algorithmic framework that is much closer to the software
of Powell [29]. Finally, we note a mild connection to the approach in [1], where
multiple solutions to nonlinear inverse problems are sought by means of a two-phase
method, where in the first phase, low accuracy solutions are obtained by building a
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linear regression model from a (large) cloud of points and moving each point to its
corresponding, slightly perturbed, Gauss–Newton step.

Further details of contributions In terms of theoretical guarantees, we extend the
global convergence results in [38], which apply to linear residual models, by proving
first-order global convergence, namely, that any (not just one) limit point of the iterates
{xk} is stationary. We also provide a worst-case complexity analysis with an iteration
count which matches that of Garmanjani, Júdice and Vicente [12] in the order of the
accuracy, but with problem constants that correspond to second-order methods. This
reflects the fact that we capture some of the curvature in the objective (since linear
models for residuals still give an approximate quadratic model for the least-squares
objective), and so the complexity of DFO-GN sits between first- and second-order
methods.

In the DFO-GN implementation, the simplification from quadratic to linear resid-
ual models leads to a confluence of two approaches for analysing and improving
the geometry of the interpolation set. We compare DFO-GN to Powell’s general
DFO solver BOBYQA and to least-squares DFO solvers DFBOLS [38] (Fortran),
POUNDERS [33] and our Python DFBOLS re-implementation Py-DFBOLS. Com-
pared to DFBOLS, Py-DFBOLS uses matrix factorization to solve the interpolation
problem (rather than low-rank updating) which, along with its implementation lan-
guage, means it more closely matches the approach of DFO-GN and hence can be
directly compared in terms of runtime and memory usage. The primary test set is
Moré & Wild [20] where additionally, we also consider noisy variants for each prob-
lem, perturbing the test set appropriately with unbiased Gaussian (multiplicative and
additive), and with additive χ2 noise; we solve to both low and high accuracy require-
ments for given evaluation budgets. We find—and show by means of performance and
data profiles—that DFO-GN performs comparably well in terms of objective evalua-
tions to the best of solvers for zero and nonzero residual problems, albeit with a small
penalty for objectives with additive stochastic noise. We then do a runtime compari-
son between DFO-GN and Py-DFBOLS on the same test set and settings, comparing
like for like, and find that DFO-GN is at least 7 times faster; see Table 1 for details.
We further investigate scalability features of DFO-GN. We compare memory require-
ments and per-iteration runtime for DFO-GN and DFBOLS on a particular nonlinear
equation problem from CUTEst with growing problem dimension n; we find that both
of these increase much more rapidly for the latter solver than the former (for example,
for n = 2500 DFO-GN’s per-iteration runtime is 2.5 times faster than the Fortran
DFBOLS’ for n = 1400). To further illustrate that the improved scalability of DFO-
GN does not come at the cost of performance, we compare evaluation performance
of DFO-GN and DFBOLS on 60 medium-size least-squares problems from CUTEst
and find similarly good behaviour of DFO-GN as on the Moré & Wild set.

Implementation Our Python implementation of DFO-GN is available on GitHub,2 and
is released under the open-source GNU General Public License.

2 https://github.com/numericalalgorithmsgroup/dfogn (https://doi.org/10.5281/zenodo.2629875).
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Structure of paper In Sect. 2 we state the DFO-GN algorithm. We prove its global
convergence to first-order critical points and worst case complexity in Sect. 3. Then
we discuss the differences between this algorithm and its software implementation in
Sect. 4. Lastly, in Sect. 5, we compare DFO-GN to other model-based derivative-free
least-squares solvers on a selection of test problems, including noisy and higher-
dimensional problems. We draw our conclusions in Sect. 6.

2 DFO-GN Algorithm

Here, our focus is unconstrained nonlinear least-squares minimization

min
x∈Rn

f (x) := 1

2
‖r(x)‖2 = 1

2

m∑

i=1

ri (x)2, (2.1)

where r(x) := [
r1(x) · · · rm(x)

]� maps Rn → R
m and is continuously differentiable

with m × n Jacobian matrix [J (x)]i, j = ∂ri (x)
∂x j

, although these derivatives are not
available. Typically m ≥ n in practice, but we do not require this for our method.
Throughout, ‖ · ‖ refers to the Euclidean norm for vectors or largest singular value for
matrices, unless otherwise stated, and we define B(x,Δ) := {y ∈ R

n : ‖y− x‖ ≤ Δ}
to be the closed ball of radius Δ > 0 about x ∈ R

n .
In this section, we introduce the DFO-GN algorithm for solving (2.1) using linear

interpolating models for r.

2.1 Linear residual models

In the classical Gauss–Newton method, we approximate r in the neighbourhood of an
iterate xk by its linearization: r(y) ≈ r(xk)+ J (xk)(y−xk), where J (x) ∈ R

m×n is the
Jacobianmatrix of first derivatives of r. For DFO-GN, we use a similar approximation,
but replace the Jacobian with an approximation to it calculated by interpolation.

Assume at iteration k we have a set of n +1 interpolation points Yk := {y0, . . . , yn}
in R

n at which we have evaluated r. This set always includes the current iterate; for
simplicity of notation, we assume y0 = xk . We then build the model

r(xk + s) ≈ mk(s) := r(xk) + Jks, (2.2)

by finding the unique Jk ∈ R
m×n satisfying the interpolation conditions

mk(yt − xk) = r(yt ), for t = 1, . . . , n, (2.3)
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noting that the other interpolation condition mk(0) = r(xk) is automatically satisfied
by (2.2).3 We can find Jk by solving the n × n system

⎡

⎢⎣
(y1 − xk)

�
...

(yn − xk)
�

⎤

⎥⎦ jk,i =
⎡

⎢⎣
ri (y1) − ri (xk)

...

ri (yn) − ri (xk)

⎤

⎥⎦ , (2.4)

for each i = 1, . . . , m, where the rows of Jk are j�k,i . This system is invertiblewhenever
the set of vectors {y1 − xk, . . . , yn − xk} is linearly independent. We ensure this in
the algorithm by routines which improve the geometry of Yk (in a specific sense to be
discussed in Sect. 2.3).

Having constructed the linear models for each residual (2.1), we need to construct
a model for the full objective f . To do this we simply take the sum of squares of the
residual models, namely,

f (xk + s) ≈ mk(s) := 1

2
‖mk(s)‖2 = f (xk) + g�

k s + 1

2
s� Hks, (2.5)

where gk := J�
k r(xk) and Hk := J�

k Jk .

2.2 Trust region framework

TheDFO-GNalgorithm is based on a trust-region framework [5]. In such a framework,
we use our model for the objective (2.5), and maintain a parameter Δk > 0 which
characterizes the region inwhichwe ‘trust’ ourmodel to be a good approximation to the
objective; the resulting ‘trust region’ is B(xk,Δk). At each iteration, we use our model
to find a new point where we expect the objective to decrease, by (approximately)
solving the ‘trust region subproblem’

sk ≈ argmin
‖s‖≤Δk

mk(s). (2.6)

If this new point xk + sk gives a sufficient objective reduction, we accept the step
(xk+1 ← xk + sk), otherwise we reject the step (xk+1 ← xk). We also use this
information to update the trust region radius Δk . The measure of ‘sufficient objective
reduction’ is the ratio

Rk = actual reduction

predicted reduction
:= f (xk) − f (xk + sk)

mk(0) − mk(sk)
. (2.7)

This framework applies to both derivative-based and derivative-free settings. How-
ever in a DFO setting, we also need to update the interpolation set Yk to incorporate
the new point xk + sk , and have steps to ensure the geometry of Yk does not become
degenerate (see Sect. 2.3).

3 We could have formulated a linear system to solve for the constant term in (2.2) as well as Jk , but this
system becomes poorly conditioned as the algorithm progresses and the points Yk get closer together.
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A derivative-free Gauss–Newton method 637

Aminimal requirement on the calculation of sk to ensure global convergence is the
following.

Assumption 2.1 Our method for solving (2.6) gives a step sk satisfying the sufficient
(‘Cauchy’) decrease condition

mk(0) − mk(sk) ≥ c1‖gk‖min

(
Δk,

‖gk‖
max(‖Hk‖, 1)

)
, (2.8)

for some c1 ∈ [1/2, 1] independent of k.

This standard condition is not onerous, and can be achieved with c1 = 1/2 by one
iteration of steepest descent with exact linesearch applied to the model mk [5].

2.3 Geometry considerations

It is crucial that model-based DFO algorithms ensure the geometry of Yk does not
become degenerate; an example where ignoring geometry causes algorithm failure is
given by Scheinberg and Toint [31].

To describe the notion of ‘good’ geometry, we need the Lagrange polynomials of
Yk . In our context of linear approximation, the Lagrange polynomials are the basis
{Λ0(x), . . . , Λn(x)} for the (n+1)-dimensional spaceof linear functions onRn defined
by

Λl(yt ) = δl,t , for all l, t ∈ {0, . . . , n}. (2.9)

Such polynomials exist whenever the matrix in (2.4) is invertible [9, Lemma 3.2];
when this condition holds, we say that Yk is poised for linear interpolation.

The notion of geometry quality is then given by the following [7].

Definition 2.2 (Λ-poised) Suppose Yk is poised for linear interpolation. Let B ⊂ R
n

be some set, and Λ ≥ 1. Then we say that Yk is Λ-poised in B if Yk ⊂ B and

max
t=0,...,n

max
x∈B

|Λt (x)| ≤ Λ, (2.10)

where {Λ0(x), . . . , Λn(x)} are the Lagrange polynomials for Yk .

In general, if Yk is Λ-poised with a small Λ, then Yk has ‘good’ geometry, in the
sense that linear interpolation using points Yk produces a more accurate model. The
notion of model accuracy we use is given in [7,8]:

Definition 2.3 (Fully linear, scalar function) A model mk ∈ C1 for f ∈ C1 is fully
linear in B(xk,Δk) if

| f (xk + s) − mk(s)| ≤ κe f Δ
2
k, (2.11)

‖∇ f (xk + s) − ∇mk(s)‖ ≤ κegΔk, (2.12)

for all ‖s‖ ≤ Δk , where κe f and κeg are independent of s, xk and Δk .
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In the case of a vector model, such as (2.1), we use an analogous definition as in
[15], which is equivalent, up to a change in constants, to the definition in [12].

Definition 2.4 (Fully linear, vector function) A vector modelmk ∈ C1 for r ∈ C1 is
fully linear in B(xk,Δk) if

‖r(xk + s) − mk(s)‖ ≤ κr
e f Δ

2
k, (2.13)

‖J (xk + s) − J m(s)‖ ≤ κr
egΔk, (2.14)

for all ‖s‖ ≤ Δk , where J m is the Jacobian ofmk , and κr
e f and κr

eg are independent of
s, xk and Δk .

In Sect. 3.1, we show that if Yk is Λ-poised, then mk (2.1) and mk (2.5) are fully
linear in B(xk,Δk), with constants that depend on Λ.

2.4 Full algorithm specification

A full description of the DFO-GN algorithm is provided in Algorithm 1.
In each iteration, if gk is small, we apply a ‘criticality phase’. This ensures that Δk

is comparable in size to ‖gk‖, which makes Δk , as well as ‖gk‖, a good measure of
progress towards optimality. After computing the trust region step sk , we then apply a
‘safety phase’, also originally from Powell [26]. In this phase, we check if ‖sk‖ is too
small compared to the lower bound ρk on the trust-region radius (see below), and if
so we reduce Δk and improve the geometry of Yk , without evaluating r(xk + sk). The
intention of this step is to detect situations where our trust region step will likely not
provide sufficient function decrease without evaluating the objective, which would be
wasteful. If the safety phase is not called, we evaluate r(xk + sk) and determine how
good the trust region step was, accepting any point which achieved sufficient objective
decrease. There are two possible causes for the situation Rk < η1 (i.e. the trust region
step was ‘bad’): the interpolation set is not good enough, or Δk is too large. We first
check the quality of the interpolation set, and only reduce Δk if necessary.

An important feature of DFO-GN, due to Powell [26], is that it maintains not only
the (usual) trust region radius Δk (used in (2.6) and in checking Λ-poisedness), but
also a lower bound on it, ρk . This mechanism is useful when we reject the trust region
step, but the geometry of Yk is not good (the ‘Model Improvement Phase’). In this
situation, we do not want to shrink Δk too much, because it is likely that the step was
rejected because of the poor geometry of Yk , not because the trust region was too large.
The algorithm floors Δk at ρk , and only shrinks Δk when we reject the trust region
step and the geometry of Yk is good (so the model mk is accurate)—in this situation,
we know that reducing Δk will actually be useful.

Remark 2.5 There are two different geometry-improving phases in Algorithm 1. The
first modifies Yk to ensure it is Λ-poised in B(xk,Δk), and is called in the safety and
model improvement phases. This can be achieved by [9, Algorithm 6.3], for instance,
where the number of interpolation systems (2.4) to be solved depends only on Λ and
n [9, Theorem 6.3].
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A derivative-free Gauss–Newton method 639

Algorithm 1 DFO-GN: Derivative-Free Optimization using Gauss–Newton.

Require: Starting point x0 ∈ R
n and initial trust region radius Δini t

0 > 0.

Parameters areΔmax ≥ Δini t
0 , criticality threshold εC > 0, criticality scalingμ > 0, trust region radius

scalings 0 < γdec < 1 < γinc ≤ γ inc and 0 < α1 < α2 < 1, acceptance thresholds 0 < η1 ≤ η2 < 1,
safety reduction factor 0 < ωS < 1, safety step threshold 0 < γS < 2c1/(1 + √

1 + 2c1), poisedness
constant Λ ≥ 1.

1: Build an initial interpolation set Y0 of size n + 1, with x0 ∈ Y0. Set ρ
ini t
0 = Δini t

0 .
2: for k = 0, 1, 2, . . . do
3: Given xk and Yk , solve the interpolation problem (2.4) and form minit

k (2.5).

4: if ‖gini t
k ‖ ≤ εC then

5: Criticality Phase: using Algorithm 2 (Appendix B), modify Yk and find Δk ≤ Δini t
k such that

Yk is Λ-poised in B(xk , Δk ) and Δk ≤ μ‖gk‖, where gk is the gradient of the new mk . Set ρk =
min(ρini t

k ,Δk ).
6: else
7: Set mk = minit

k , Δk = Δini t
k and ρk = ρini t

k .
8: end if
9: Approximately solve the trust region subproblem (2.6) to get step sk satisfying Assumption 2.1.
10: if ‖sk‖ < γSρk then
11: Safety Phase: Set xk+1 = xk and Δini t

k+1 = max(ρk , ωSΔk ), and form Yk+1 by making Yk

Λ-poised in B(xk+1, Δ
ini t
k+1).

12: If Δini t
k+1 = ρk , set (ρ

ini t
k+1,Δ

ini t
k+1) = (α1ρk , α2ρk ), otherwise set ρini t

k+1 = ρk .
13: goto line 3.
14: end if
15: Calculate ratio Rk (2.7).
16: Accept/reject step and update trust region radius: set

xk+1 =
{
xk + sk , Rk ≥ η1,

xk , Rk < η1,
and Δini t

k+1 =

⎧
⎪⎨

⎪⎩

min(max(γincΔk , γ inc‖sk‖), Δmax ), Rk ≥ η2,

max(γdecΔk , ‖sk‖, ρk ), η1 ≤ Rk < η2,

max(min(γdecΔk , ‖sk‖), ρk ), Rk < η1.

(2.15)

17: if Rk ≥ η1 then
18: Form Yk+1 = Yk ∪ {xk+1} \ {yt } for some yt ∈ Yk and set ρini t

k+1 = ρk .
19: else if Yk is not Λ-poised in B(xk , Δk ) then
20: Model Improvement Phase: Form Yk+1 by making Yk Λ-poised in B(xk+1,Δ

ini t
k+1) and set

ρini t
k+1 = ρk .

21: else [Rk < η1 and Yk is Λ-poised in B(xk , Δk )]
22: Unsuccessful Phase: Set Yk+1 = Yk , and if Δini t

k+1 = ρk , set (ρini t
k+1,Δ

ini t
k+1) = (α1ρk , α2ρk ),

otherwise set ρini t
k+1 = ρk .

23: end if
24: end for

The second, called in the criticality phase, also ensures Yk is Λ-poised, but it
also modifies Δk to ensure Δk ≤ μ‖gk‖. This is a more complicated procedure [9,
Algorithm 10.2], as we have a coupling between Δk and Yk : ensuring Λ-poisedness
in B(xk,Δk) depends on Δk , but since gk depends on Yk , there is a dependency of Δk

on Yk . Full details of how to achieve this are given in Appendix B—we show that this
procedure terminates as long as ‖∇ f (xk)‖ �= 0. In addition, there, we also prove the
bound

min
(
Δini t

k , const · ‖∇ f (xk)‖
)

≤ Δk ≤ Δini t
k . (2.16)
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640 C. Cartis, L. Roberts

If the procedure terminates in one iteration, then Δk = Δini t
k , and we have simply

made Yk Λ-poised, just as in the model-improving phase. Otherwise, we do one of
thesemodel-improving iterations, then several iterations where bothΔk is reduced and
Yk is made Λ-poised. The bound (2.16) tells us that these unsuccessful-type iterations
do not occur when Δini t

k (but not ∇ f (xk)) is sufficiently small.4

Remark 2.6 In Lemma 3.3, we show that if Yk is Λ-poised, then mk is fully linear
with constants that depend on Λ. For the highest level of generality, one may replace
‘make Yk Λ-poised’ with ‘makemk fully linear’ throughout Algorithm 1. Any strategy
which achieves fully linear models would be sufficient for the convergence results in
Sect. 3.3.

Remark 2.7 There are several differences betweenAlgorithm1and its implementation,
which we fully detail in Sect. 4. In particular, there is no criticality phase in the DFO-
GN implementation as we found it is not needed, but the safety step is preserved to
keep continuity with the BOBYQA framework5; also, the geometry-improving phases
are replaced by a simplified calculation.

3 Convergence and complexity results

We first outline the connection between Λ-poisedness of Yk and fully linear models.
We then prove global convergence of Algorithm 1 (i.e. convergence from any starting
point x0) to first-order critical points, and determine its worst-case complexity.

3.1 Interpolationmodels are fully linear

To begin, we require some assumptions on the smoothness of r.

Assumption 3.1 The function r is C1 and its Jacobian J (x) is Lipschitz continuous in
B, the convex hull of ∪k B(xk,Δmax ), with constant L J . We also assume that r(x) and
J (x) are uniformly bounded in the same region; i.e.‖r(x)‖ ≤ rmax and‖J (x)‖ ≤ Jmax

for all x ∈ B.
If the level setL := {x : f (x) ≤ f (x0)} is bounded, which is assumed in [38], then

xk ∈ L for all k, so B is compact, from which Assumption 3.1 follows. A standard
result follows, whose proof can be found in [4].

Lemma 3.2 If Assumption 3.1 holds, then ∇ f is Lipschitz continuous in B with con-
stant

L∇ f := rmax L J + J 2
max . (3.1)

4 Themore common approach in the criticality phase (e.g. [9,12,38]) is to use an extra parameter 0 < β < μ

and floor Δk at β‖gk‖, maintaining full linearity with extra assumptions on κe f and κeg [8, Lemma 3.2],
and requiring all fully linear models have Lipschitz continuous gradient with uniformly bounded Lipschitz
constant.
5 Note that the criticality and safety phases have similar aims, namely, to keep the approximate gradient
and the step proportional to Δk . However, showing global convergence/complexity without a criticality
step is unprecedented in the literature, and left for future work.

123



A derivative-free Gauss–Newton method 641

We now state the connection between Λ-poisedness of Yk and full linearity of the
models mk (2.1) and mk (2.5).

Lemma 3.3 Suppose Assumption 3.1 holds and Yk is Λ-poised in B(xk,Δk). Then
mk (2.1) is a fully linear model for r in B(xk,Δk) in the sense of Definition 2.4 with
constants

κr
e f = κr

eg + L J

2
and κr

eg = 1

2
L J

(√
nC + 2

)
, (3.2)

in (2.13) and (2.14), where C = O(Λ). Under the same hypotheses, mk (2.5) is a fully
linear model for f in B(xk,Δk) in the sense of Definition 2.3 with constants

κe f = κeg + L∇ f + (κr
egΔmax + Jmax )

2

2
and

κeg = L∇ f + κr
egrmax + (κr

egΔmax + Jmax )
2, (3.3)

in (2.11) and (2.12), where L∇ f is from (3.1). We also have the bound ‖Hk‖ ≤
(κr

egΔmax + Jmax )
2, independent of xk , Yk and Δk .

Proof See Appendix A. ��

3.2 Global convergence of DFO-GN

We begin with some nomenclature to describe certain iterations: we call an iteration
(for which the safety phase is not called)

– ‘Successful’ if xk+1 = xk + sk (i.e. Rk ≥ η1), and ‘very successful’ if Rk ≥ η2.
Let S be the set of successful iterations k;

– ‘Model-Improving’ if Rk < η1 and themodel-improvement phase is called (i.e. Yk

is not Λ-poised in B(xk,Δk)); and
– ‘Unsuccessful’ if Rk < η1 and the model-improvement phase is not called.

The results below are largely based on corresponding results in [9,38]. As such, we
omit many details which can be found there; full proofs of these results are given in
extended technical report [4] of this paper.

Assumption 3.4 We assume that ‖Hk‖ ≤ κH for all k, for some κH ≥ 1.6

Lemma 3.5 (Lemma 4.3, [38]) Suppose Assumption 2.1 holds. If the model mk is fully
linear in B(xk,Δk) and

Δk ≤ c0‖gk‖, where c0 := min

(
c1(1 − η2)

2κe f
,
1

κH

)
, (3.4)

then either the k-th iteration is very successful or the safety phase is called.

6 Lemma 3.3 ensures Assumption 3.4 holds whenever Yk is Λ-poised in B(xk , Δk ), but we need it to hold
on all iterations. However, most of our analysis holds if this assumption is removed—see Remark 3.21 for
details.
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642 C. Cartis, L. Roberts

The next result provides a lower bound on the size of the trust region step ‖sk‖,
which we will later use to determine that the safety phase is not called when ‖gk‖
is bounded away from zero and Δk is sufficiently small. Note that [38, Lemma 4.4]
shows that the safety phase is not called by requiring that the trust region subproblem
(2.6) is solved to global optimality, a stronger condition than Assumption 2.1.

Lemma 3.6 Suppose Assumption 2.1 holds. Then the step sk satisfies

‖sk‖ ≥ c2 min

(
Δk,

‖gk‖
max(‖Hk‖, 1)

)
, (3.5)

where c2 := 2c1/(1 + √
1 + 2c1).

Proof Let hk := max(‖Hk‖, 1) ≥ 1. Since mk(0) − mk(sk) ≥ 0 from (2.8), we have

mk(0) − mk(sk) = |mk(0) − mk(sk)| =
∣∣∣∣g

�
k sk + 1

2
s�k Hksk

∣∣∣∣

≤ ‖sk‖ · ‖gk‖ + hk

2
‖sk‖2. (3.6)

Substituting this into (2.8), we get

1

2
‖sk‖2 + ‖gk‖

hk
· ‖sk‖ − c1

‖gk‖
hk

min

(
Δk,

‖gk‖
hk

)
≥ 0. (3.7)

For (3.7) to be satisfied, we require that ‖sk‖ is larger than (or equal to) the positive
root of the left-hand side of (3.7), which gives the first inequality below

‖sk‖ ≥ 2c1Ck min (Δk, Ck)√
C2

k + 2c1Ck min (Δk, Ck) + Ck

≥ 2c1Ck min (Δk, Ck)√
(1 + 2c1)C2

k + Ck

, (3.8)

where Ck := ‖gk‖/hk ; from which we recover (3.5). ��
Lemma 3.7 In all iterations, ‖gk‖ ≥ min(εC ,Δk/μ). Also, if ‖∇ f (xk)‖ ≥ ε > 0
then

‖gk‖ ≥ εg := min

(
εC ,

ε

1 + κegμ

)
> 0. (3.9)

Proof Firstly, if the criticality phase is not called, thenwemust have ‖gk‖ = ‖gini t
k ‖ >

εC . Otherwise, we have Δk ≤ μ‖gk‖. Hence ‖gk‖ ≥ min(εC ,Δk/μ). The proof of
(3.9) is given in [9, Lemma 10.11]. ��
Lemma 3.8 Suppose Assumptions 2.1, 3.1 and 3.4 hold. If ‖∇ f (xk)‖ ≥ ε > 0 for all
k, then ρk ≥ ρmin > 0 for all k, where

ρmin := min

(
Δini t

0 ,
ωCε

κeg + 1/μ
,

α1εg

κH
, α1

(
κeg + 2κe f

c1(1 − η2)

)−1

ε

)
. (3.10)
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A derivative-free Gauss–Newton method 643

Proof From Lemma 3.7, we also have ‖gk‖ ≥ εg > 0 for all k. To find a contradiction,
let k(0) be the first k such that ρk < ρmin . That is, we have

ρini t
0 ≥ ρ0 ≥ ρini t

1 ≥ ρ1 ≥ · · · ≥ ρini t
k(0)−1 ≥ ρk(0)−1 ≥ ρmin and ρk(0) < ρmin .

(3.11)

We first show that

ρk(0) = ρini t
k(0) < ρmin . (3.12)

From Algorithm 1, we know that either ρk(0) = ρini t
k(0) or ρk(0) = Δk(0). Hence we

must either have ρini t
k(0) < ρmin or Δk(0) < ρmin . In the former case, there is nothing to

prove; in the latter, using Lemma B.1, we have that

ρmin > Δk(0) ≥ min

(
Δini t

k(0),
ωCε

κeg + 1/μ

)
≥ min

(
ρini t

k(0),
ωCε

κeg + 1/μ

)
. (3.13)

Since ρmin ≤ ωCε/(κeg + 1/μ), we therefore conclude that (3.12) holds.
Since ρmin ≤ Δini t

0 = ρini t
0 , we therefore have k(0) > 0 and ρk(0)−1 ≥ ρmin >

ρini t
k(0). This reduction in ρ can only happen from a safety step or an unsuccessful step,

and we must have ρini t
k(0) = α1ρk(0)−1, so ρk(0)−1 ≤ ρmin/α1. If we had a safety step,

we know ‖sk(0)−1‖ ≤ γSρk(0)−1, but if we had an unsuccessful step, we must have
γdec‖sk(0)−1‖ ≤ min(γdecΔk(0)−1, ‖sk(0)−1‖) ≤ ρk(0)−1. Hence in either case, we
have

‖sk(0)−1‖ ≤ min(γS, γ
−1
dec)ρk(0)−1 ≤ 1

α1
min(γS, γ

−1
dec)ρmin = γS

α1
ρmin, (3.14)

since γS < 1 and γdec < 1. Hence by Lemma 3.6 we have

c2 min

(
Δk(0)−1,

εg

κH

)
≤ ‖sk(0)−1‖ ≤ γS

α1
ρmin . (3.15)

Note that ρmin ≤ α1εg/κH < (α1c2εg)/(γSκH ), where in the last inequality we
used the choice of γS in Algorithm 1. This inequality and the choice of γS , together
with (3.15), also imply

Δk(0)−1 ≤ γSρmin

α1c2
<

ρmin

α1
≤ min

(
εg

κH
,

(
κeg + 2κe f

c1(1 − η2)

)−1

ε

)
. (3.16)

Then since Δk(0)−1 ≤ εg/κH , Lemma 3.6 gives us ‖sk(0)−1‖ ≥ c2Δk(0)−1 > γSρk(0)−1
and the safety phase is not called.
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644 C. Cartis, L. Roberts

If mk is not fully linear, then we must have either a successful or model-improving
iteration, so ρini t

k(0)
= ρk(0)−1, contradicting (3.12). Thus mk must be fully linear. Now

suppose that

Δk(0)−1 >
c1(1 − η2)‖gk(0)−1‖

2κe f
. (3.17)

Then using full linearity, we have

ε ≤ ‖∇ f (xk(0)−1)‖ ≤ κegΔk(0)−1 + ‖gk(0)−1‖ <

(
κeg + 2κe f

c1(1 − η2)

)
Δk(0)−1.

(3.18)

contradicting (3.16). That is, (3.17) is false and so together with (3.16), we have (3.4).
Hence Lemma 3.5 implies iteration (k0 − 1) was very successful (as we have already
established the safety phase was not called), so ρini t

k(0)
= ρk(0)−1, contradicting (3.12).

��
Our first convergence result considers the case where we have finitely-many suc-

cessful iterations.

Lemma 3.9 Suppose Assumptions 2.1, 3.1 and 3.4 hold. If there are finitely many
successful iterations, then limk→∞ Δk = limk→∞ ρk = 0 and limk→∞ ‖∇ f (xk)‖ =
0.

Proof The proof follows [9, Lemma 10.8], except we have to consider the possibility
of safety phases in two places. First, to showΔk → 0, we note thatΔk is reduced by a
factor max(α2, ωS) < 1 in safety phases. Secondly, we use the observation: if the mk

is fully linear, ‖gk‖ is sufficiently large, and ρk ≤ Δk are both sufficiently small, then
Lemma 3.5 gives us either a very successful iteration or a safety step. In this case, a
safety step is not called, because Lemma 3.6 implies ‖sk‖ ≥ c2Δk > γSρk . ��
Lemma 3.10 (Lemma 10.9, [9]) Suppose Assumptions 2.1, 3.1 and 3.4 hold. Then
limk→∞ Δk = 0 and so limk→∞ ρk = 0.

Proof The proof of [9, Lemma 10.9] shows Δk → 0; since ρk ≤ Δk , we conclude
ρk → 0. ��
Theorem 3.11 Suppose Assumptions 2.1, 3.1 and 3.4 hold. Then

lim inf
k→∞ ‖∇ f (xk)‖ = 0. (3.19)

Proof If |S| < ∞, then this follows from Lemma 3.9. Otherwise, it follows from
Lemma 3.10 and Lemma 3.8. ��
Theorem 3.12 Suppose Assumptions2.1, 3.1and3.4hold. Then limk→∞ ‖∇ f (xk)‖ =
0.
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A derivative-free Gauss–Newton method 645

Proof If |S| < ∞, then the result follows from Lemma 3.9. Otherwise, the proof of
[9, Theorem 10.13] applies, except for one modification: for k ∈ K sufficiently large,
iteration k is not unsuccessful, so must be a safety, successful or model-improving
step. It cannot be a safety step by the same reasoning as in the proof of Lemma 3.9:
since ‖gk‖ ≥ ε for k ∈ K, andΔk → 0, if k sufficiently large then Lemma 3.6 implies
that ‖sk‖ ≥ c2Δk > γSρk . Hence iteration k must be successful or model-improving,
and the remainder of the proof holds. ��

3.3 Worst-case complexity

Next,webound thenumber of iterations andobjective evaluations until‖∇ f (xk)‖ < ε.
We know such a bound exists from Theorem 3.11. Let iε be the last iteration before
‖∇ f (xiε+1)‖ < ε for the first time.

Lemma 3.13 Suppose Assumptions 2.1, 3.1 and 3.4 hold. Let |Siε | be the number of
successful steps up to iteration iε . Then

|Siε | ≤ f (x0)
η1c1

max
(
κH ε−2

g , ε−1
g ρ−1

min

)
, (3.20)

where εg is defined in (3.9), and ρmin in (3.10).

Proof For all k ∈ Siε , we have the sufficient decrease condition

f (xk) − f (xk+1) ≥ η1 (mk(0) − mk(sk)) ≥ η1c1‖gk‖min

(‖gk‖
κH

,Δk

)
. (3.21)

Since ‖gk‖ ≥ εg from Lemma 3.7 and Δk ≥ ρk ≥ ρmin from Lemma 3.8, this means

f (xk) − f (xk+1) ≥ η1c1εg min

(
εg

κH
, ρmin

)
. (3.22)

Summing (3.22) over all k ∈ Siε , and noting that 0 ≤ f (xk) ≤ f (x0), we get

f (x0) ≥ |Siε |η1c1εg min

(
εg

κH
, ρmin

)
, (3.23)

from which (3.20) follows. ��
We now need to count the number of iterations of Algorithm 1 which are not

successful. Following [12], we count each iteration of the loop inside the criticality
phase (Algorithm 2) as a separate iteration—in effect, one ‘iteration’ corresponds
to one construction of the model mk (2.5). We also consider separately the number
of criticality phases for which Δk is not reduced (i.e. Δk = Δini t

k ). Counting until
iteration iε (inclusive), we let
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646 C. Cartis, L. Roberts

– CM
iε

be the set of criticality phase iterations k ≤ iε for which Δk is not reduced
(i.e. the first iteration of every call of Algorithm 2—see Remark 2.5 for further
details);

– CU
iε

be the set of criticality phase iterations k ≤ iε where Δk is reduced (i.e. all
iterations except the first for every call of Algorithm 2);

– Fiε be the set of iterations where the safety phase is called;
– Miε be the set of iterations where the model-improving phase is called; and
– Uiε be the set of unsuccessful iterations.

7

Lemma 3.14 Suppose Assumptions 2.1, 3.1 and 3.4 hold. Then we have the bounds

|CU
iε | + |Fiε | + |Uiε | ≤ |Siε | · log γ inc

| logα3| + 1

| logα3| log
(

Δini t
0

ρmin

)
, (3.24)

|CM
iε | ≤ |Fiε | + |Siε | + |Uiε |, (3.25)

|Miε | ≤ |CM
iε | + |CU

iε | + |Fiε | + |Siε | + |Uiε |, (3.26)

where α3 := max(ωC , ωS, γdec, α2) < 1 and ρmin is defined in (3.10).

Proof On each iteration k ∈ CU
iε
, we reduce Δk by a factor of ωC . Similarly, on each

iteration k ∈ Fiε we reduce Δk by a factor of at least max(ωS, α2), and for iterations
in Uiε by a factor of at least max(γdec, α2). On each successful iteration, we increase
Δk by a factor of at most γ inc, and on all other iterations, Δk is either constant or
reduced. Therefore, we must have

ρmin ≤ Δiε ≤ Δini t
0 · ω

|CU
iε

|
C · max(ωS, α2)

|Fiε | · max(γdec, α2)
|Uiε | · γ

|Siε |
inc , (3.27)

≤ Δini t
0 · α

|CU
iε

|+|Fiε |+|Uiε |
3 · γ

|Siε |
inc , (3.28)

from which (3.24) follows.
After every call of the criticality phase, we have either a safety, successful or

unsuccessful step, giving us (3.25). Similarly, after every model-improving phase, the
next iteration cannot call a subsequent model-improving phase, giving us (3.26). ��
Assumption 3.15 The algorithm parameter εC ≥ c3ε for some constant c3 > 0.

Note that Assumption 3.15 can be easily satisfied by appropriate parameter choices in
Algorithm 1.

Theorem 3.16 Suppose Assumptions 2.1, 3.1, 3.4 and 3.15 hold. Then the number of
iterations iε (i.e. the number of times a model mk (2.5) is built) until ‖∇ f (xiε+1)‖ < ε

is at most

7 Note that the analysis in [15] bounds the number of outer iterations of Algorithm 1; i.e. excluding CM
iε

and

CU
iε
. Instead, they prove that while ‖∇ f (xk )‖ ≥ ε, the criticality phase requires at most | log ε| iterations.

Thus their bound on the number of objective evaluations is a factor | log ε| larger than in [12] and than here.
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A derivative-free Gauss–Newton method 647

⌊
4 f (x0)
η1c1

(
1 + log γ inc

| logα3|
)
max

(
κH c−2

4 ε−2, c−1
4 c−1

5 ε−2, c−1
4 (Δini t

0 )−1ε−1
)

+ 4

| logα3| max
(
0, log

(
Δini t

0 c−1
5 ε−1

))⌋
(3.29)

where c4 := min
(
c3, (1 + κegμ)−1

)
and

c5 := min

(
ωC

κeg + 1/μ
,
α1c4
κH

, α1

(
κeg + 2κe f

c1(1 − η2)

)−1
)

. (3.30)

Proof From Assumption 3.15 and Lemma 3.7, we have εg = c4ε. Similarly, from
Lemma 3.8 we have ρmin = min(Δini t

0 , c5ε). Thus using Lemma 3.14, we can bound
the total number of iterations by

|CM
iε | + |CU

iε | + |Fiε | + |Siε | + |Miε | + |Uiε | (3.31)

≤ 4|Siε | + 4
(
|CU

iε | + |Fiε | + |Uiε |
)

, (3.32)

≤ 4|Siε |
(
1 + log γ inc

| logα3|
)

+ 4

| logα3| log
(

Δini t
0

ρmin

)
, (3.33)

and so (3.29) follows from this and Lemma 3.13. ��
We can summarize our results as follows:

Corollary 3.17 Suppose Assumptions 2.1, 3.1, 3.4 and 3.15 hold. Then for ε ∈ (0, 1],
the number of iterations iε (i.e. the number of times a model mk (2.5) is built) until
‖∇ f (xiε+1)‖ < ε is at most O(κH κ2

d ε−2), and the number of objective evaluations
until iε is at most O(κH κ2

d nε−2), where κd := max(κe f , κeg) = O(nL2
J ).

Proof From Theorem 3.16, we have c−1
4 = O(κeg) and so

c−1
5 = O(max(κeg, κH c−1

4 , κe f + κeg)) = O(κH κd). (3.34)

To leading order, the number of iterations is

O(max(κH c−2
4 , c−1

4 c−1
5 )ε−2) = O(κH κ2

d ε−2), (3.35)

as required. In every type of iteration, we change at most n + 1 points, and so require
no more than n + 1 evaluations. The result κd = O(nL2

J ) follows from Lemma 3.3. ��
Remark 3.18 Theorem3.16 gives us a possible termination criterion forAlgorithm1—
we loop until k exceeds the value (3.29) or until ρk ≤ ρmin . However, this would
require us to know problem constants κe f , κeg and κH in advance, which is not usually
the case. Moreover, (3.29) is a worst-case bound and so unduly pessimistic.
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Remark 3.19 In [12], the authors propose a different criterion to test whether the crit-
icality phase should be entered: ‖gini t

k ‖ ≤ Δk/μ rather than ‖gini t
k ‖ ≤ εC as found

here and in [9]. We are able to use our criterion because of Assumption 3.15. If this
did not hold, we would have εg � ε and so ρmin � ε, which would worsen the result
in Theorem 3.16. In practice, Assumption 3.15 is reasonable, as we would not expect
a user to prescribe a criticality tolerance much smaller than their desired solution
tolerance.

The standard complexity bound for first-order methods is O(κH κ2
d ε−2) iterations

andO(κH κ2
d nε−2) evaluations [12], where κd = O(

√
n) and κH = 1. Corollary 3.17

gives us the same count of iterations and evaluations, but the worse bounds κd = O(n)

and κH = O(κd), coming from the least-squares structure (Lemma 3.3).
However, our model (2.5) is better than a simple linear model for f , as it captures

some of the curvature information in the objective via the term J T
k Jk . This means

that DFO-GN produces models which are between fully linear and fully quadratic [9,
Definition 10.4], which is the requirement for convergence of second-ordermethods. It
thereforemakes sense to also compare the complexity ofDFO-GNwith the complexity
of second-order methods.

Unsurprisingly, the standard bound for second-order methods is worse in gen-
eral, than for first-order methods, namely, O(max(κH κ2

d , κ3
d )ε−3) iterations and

O(max(κH κ2
d , κ3

d )n2ε−3) evaluations [16], where κd = O(n), to achieve second-
order criticality for the given objective. Note that here κd := max(κe f , κeg, κeh)

for fully quadratic models. If ‖∇2 f ‖ is uniformly bounded, then we would expect
κH = O(κeh) = O(κd).

Thus DFO-GN has the iteration and evaluation complexity of a first-order method,
but the problem constants (i.e. dependency on n) of a second-order method. That is,
assuming κH = O(κd) (as suggested by Lemma 3.3), DFO-GN requires O(n3ε−2)

iterations and O(n4ε−2) evaluations, compared to O(nε−2) iterations and O(n2ε−2)

evaluations for a first-order method, and O(n3ε−3) iterations and O(n5ε−3) evalua-
tions for a second-order method.

Remark 3.20 In Lemma 3.3, we used the result C = O(Λ) whenever Yk is Λ-poised,
and wrote κeg in terms of C ; see Appendix A for details on the provenance of C with
respect to the interpolation system (2.3). Our approach here matches the presentation
of the first- and second-order complexity bounds from [12,16]. However, [9, Theorem
3.14] shows that C may also depend on n. Including this dependence, we have C =
O(

√
n Λ) for DFO-GN and general first-order methods, and C = O(n2Λ) for general

second-order methods (where C is now adapted for quadratic interpolation). This
would yield the alternative bounds κd = O(n) for first-order methods, O(n2) for
DFO-GN and O(n3) for second-order methods.8 Either way, we conclude that the
complexity of DFO-GN lies between first- and second-order methods.

Remark 3.21 (Discussion of Assumption 3.4) It is also important to note that when
mk is fully linear, we have an explicit bound ‖Hk‖ ≤ κ̃H = O(κd) from Lemma 3.3.
Thismeans that Assumption 3.4, which typically necessary for first-order convergence

8 For second-order methods, the fully quadratic bound is κd = O(nC).
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(e.g. [9,12]), is not required for Theorem 3.11 and our complexity analysis. To remove
the assumption, we need to change Algorithm 1 in two places:

1. Replace the test for entering the criticality phase with

min

(
‖gini t

k ‖, ‖gini t
k ‖

max(‖Hinit
k ‖, 1)

)
≤ εC ; and (3.36)

2. Require the criticality phase to output mk fully linear and Δk satisfying

Δk ≤ μmin

(
‖gk‖, ‖gk‖

max(‖Hk‖, 1)
)

. (3.37)

With these changes, the criticality phase still terminates, but instead of (B.1) we have

min

(
Δkinit ,

ωCε

κeg + 1/μ
,

ωCε

κeg + κ̃H /μ

)
≤ Δk ≤ Δkinit . (3.38)

We can also augment Lemma 3.7 with the following, which can be used to arrive at a
new value for ρmin .

Lemma 3.22 In all iterations,‖gk‖/max(‖Hk‖, 1) ≥ min(εC ,Δk/μ). If‖∇ f (xk)‖ ≥
ε > 0 then

‖gk‖
max(‖Hk‖, 1) ≥ εH := min

(
εC ,

ε

(1 + κegμ)̃κH

)
> 0. (3.39)

Ultimately, we arrive at complexity bounds whichmatch Corollary 3.17, but replac-
ing κH with κ̃H . However, Assumption 3.4 is still necessary for Theorem 3.12 to hold.

4 Implementation

In this section, we describe the key differences between Algorithm 1 and its software
implementation DFO-GN. These differences largely come from Powell’s implemen-
tation of BOBYQA [29] and are also features of DFBOLS, the implementation of the
algorithm from Zhang et al. [38]. We also obtain a unified approach for analysing and
improving the geometry of the interpolation set due to our particular choice of local
Gauss–Newton-like models.

4.1 Geometry-improving phases

In practice, DFO algorithms are generally not run to very high tolerance levels, and so
the asymptotic behaviour of such algorithms is less important than for other optimiza-
tionmethods. To this end,DFO-GN, likeBOBYQAandDFBOLS, does not implement
a criticality phase; but the safety step is implemented to encourage convergence.
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In the geometry phases of the algorithm, we check the Λ-poisedness of Yk by
calculating all the Lagrange polynomials for Yk (which are linear), then maximizing
the absolute value of each in B(xk,Δk). To modify Yk to make it Λ-poised, we can
repeat the following procedure [9, Algorithm 6.3]:

1. Select the point yt ∈ Yk (yt �= xk) for which maxy∈B(xk ,Δk ) |Λt (y)| is maximized
(c.f. (2.10));

2. Replace yt in Yk with y+, where

y+ = argmax
y∈B(xk ,Δk )

|Λt (y)|, (4.1)

until Yk isΛ-poised in B(xk,Δk). This procedure terminates after at most N iterations,
where N depends only onΛ and n [9, Theorem 6.3], and in particular does not depend
on xk , Yk or Δk .

In DFO-GN, we follow BOBYQA and replace these geometry-checking and
improvement algorithms (which are called in the safety and model-improvement
phases of Algorithm 1) with simplified calculations. Firstly, instead of checking for
the Λ-poisedness of Yk , we instead check if all interpolation points are within some
distance of xk , typically a multiple of Δk . If any point is sufficiently far from xk ,
the geometry of Yk is improved by selecting the point yt furthest from xk , and mov-
ing it to y+ satisfying (4.1). That is, we effectively perform one iteration of the full
geometry-improving procedure.

4.2 Model updating

In Algorithm 1, we only update Yk+1, and hence mk and mk , on successful steps.
However, in our implementation, we always try to incorporate new information when
it becomes available, and so we update Yk+1 = Yk ∪ {xk + sk} \ {yt } on all iterations
except when the safety phase is called (since in the safety phase we never evaluate
r(xk + sk)).

Regardless of how often we update the model, we need some criterion for selecting
the point yt ∈ Yk to replace with y+ := xk + sk . There are three common reasons for
choosing a particular point to remove from the interpolation set:

Furthest Point: It is the furthest away from xk (or xk+1);
Optimal Λ-poisedness: Replacing it with y+ would give the maximum improve-

ment in the Λ-poisedness of Yk . That is, choose the t for
which |Λt (y+)| is maximized;

Stable Update: Replacing it with xk + sk would induce the most stable
update to the interpolation system (2.4). As introduced
by Powell [27] for quadratic models, moving yt to y+
induces a low-rank update of the matrix W → Wnew in
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the interpolation system, here (2.4). From the Sherman-
Morrison-Woodbury formula, this induces a low-rank
update of H = W −1, which has the form

Hnew ← H + 1

σt

[
At B�

t

]
, (4.2)

for some σt �= 0 and low rank At B�
t . Under this measure,

we would want to replace a point in the interpolation set
when the resulting |σt | is maximal; i.e. the update (4.2)
is ‘stable’. In [27], it is shown that for underdetermined
quadratic interpolation, σt ≥ Λt (y+)2.

Two approaches for selecting yt combine two of these reasons into a single criterion.
Firstly in BOBYQA, the point t is chosen by combining the ‘furthest point’ and ‘stable
update’ measures:

t = argmax
j=0,...,n

{
|σ j |max

(
‖y j − xk‖4

Δ4
k

, 1

)}
. (4.3)

Alternatively, Scheinberg and Toint [31] combine the ‘furthest point’ and ‘optimal
Λ-poisedness’ measures:

t = argmax
j=0,...,n

{
|Λ j (y+)| ‖y j − xk‖2

}
. (4.4)

In DFO-GN, we use the BOBYQA criterion (4.3). However, as we now show, in DFO-
GN, the two measures ‘optimal Λ-poisedness’ and ‘stable update’ coincide, meaning
our framework allows a unification of the perspectives from [29] and [31], rather than
having the indirect relationship via the bound σt ≥ Λt (y+)2.

To this end, define W as the matrix in (2.4), and let H := W −1. The Lagrange
polynomials for Yk can then be found by applying the interpolation conditions (2.9).
That is, we have

Λt (y) = 1 + g�
t (y − yt ), (4.5)

where gt solves

Wgt =
⎡

⎢⎣
Λt (y1) − Λt (xk)

...

Λt (yn) − Λt (xk)

⎤

⎥⎦ =
{
et , if yt �= xk,

−e, if yt = xk,
(4.6)
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where et is the usual coordinate vector in Rn and e := [1 · · · 1]� ∈ R
n . This gives us

the relations

Λt (y+) =
{
1 + (Het )

�(y+ − yt ), if yt �= xk,

1 − (He)�(y+ − xk), if yt = xk .
(4.7)

Now, we consider the ‘stable update’ measure. We will update the point yt to y+,
whichwill give us a newmatrix Wnew with inverse Hnew. This change induces a rank-1
update from W to Wnew, given by

Wnew = W +
{
et (y+ − yt )

�, if yt �= xk,

e(xk − y+)�, if yt = xk .
(4.8)

By the Sherman–Morrison formula, this induces a rank-1 update from H to Hnew,
given by

Hnew = H − 1

σt

{
Het (y+ − yt )

� H , if yt �= xk,

He(xk − y+)� H , if yt = xk .
(4.9)

For a general rank-1 update Wnew = W +uv�, the denominator is σ = 1+v�W −1u,
and so here we have

σt =
{
1 + (y+ − yt )

�Het , if yt �= xk,

1 + (xk − y+)� He, if yt = xk,
(4.10)

and hence σt = Λt (y+), as expected.

4.3 Termination criteria

The specification in Algorithm 1 does not include any termination criteria. In the
implementation of DFO-GN, we use the same termination criteria as DFBOLS [38],
namely terminating whenever any of the following are satisfied:

– Small objective value: since f ≥ 0 for least-squares problems, we terminate when

f (xk) ≤ max{10−12, 10−20 f (x0)}. (4.11)

For nonzero residual problems (i.e. where f (x∗) > 0 at the true minimum x∗), it
is unlikely that termination will occur by this criterion;

– Small trust region: ρk , which converges to zero as k → ∞ from Lemma 3.10, falls
below a user-specified threshold; and

– Computational budget: a (user-specified) maximum number of evaluations of r is
reached.
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4.4 Linear algebra implementation details

DFO-GN requires the solution of the interpolation system (2.4) for m (different) right-
hand sides at each iteration. We implement this in DFO-GNwith a preprocessing step,
where we compute an LU factorization of the matrix W , and a solve step, where
we use forward/back substitution to solve the system for each right-hand side. The
preprocessing step could alternatively be implemented using low-rank updates of W −1

whenever an interpolation point is changed, similar to Powell’s approach [27] for
quadratic residual interpolationmodels. In the case of linear residualmodels, changing
one interpolation point causes a rank-1 update of W and hence of W −1 (see Sect. 4.2),
so this approach would give W −1 with O(n2) cost per iteration, as opposed to the
O(n3) per-iteration cost of an LU factorization.

Using either the factorization preprocessing step or low-rank updates, solving (2.4)
with m right-hand sides gives a per-iteration cost for the solve step of O(mn2). In
nonlinear least-squares problems, we have m ≥ n, so this cost in general, dominates
the preprocessing cost, regardless of the approach used. We chose the factorization
approach in DFO-GN because of its simplicity.

By contrast, for underdetermined quadratic residual models with p = O(n) inter-
polation points (e.g. n + 2 or 2n + 1), the resulting linear system has size p + n + 1.
This means that the preprocessing cost is O((p + n)3) for the factorization approach
or O((p + n)2) for the low-rank update approach, and the solve step has cost
O(m(p + n)2). As a result, if m is not too large compared to n, a factorization-based
approach would give a worse per-iteration cost than the low-rank update approach, so
there is a benefit to using low-rank update methods. The software DFBOLS [38] uses
quadratic models with the low-rank update approach.

4.5 Other implementation differences

Addition of bound constraints Here, we solve (2.1) subject to a ≤ x ≤ b for given
bounds a,b ∈ R

n . This is allowed in the implementation of DFO-GN as it is important
to practical applications. This requires no change to the logic as specified in Algo-
rithm 1, but does require the addition of the same bound constraints in the algorithms
for the trust region subproblem (2.6) and calculating geometry-improving steps (4.1).
For the trust-region subproblem, we use the routine from DFBOLS, which is itself a
slight modification of the routine from BOBYQA (which was specifically designed to
produce feasible iterates in the presence of bound constraints). Calculating geometry-
improving steps (4.1) is easier, since the Lagrange polynomials are linear rather than
quadratic, and so we need to maximize a linear objective subject to Euclidean ball and
bound constraints.We use our own routine for thiswhich handles the bound constraints
via an active set method; see [4] for full details.

Other differences The following changes, which are from BOBYQA, are present in
the implementation of DFO-GN:

– We accept any step (i.e. set xk+1 = xk +sk) where we see an objective reduction—
that is, when Rk > 0. In fact, we always update xk to be the best value found so
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far, even if that point came from a geometry-improving phase rather than a trust
region step;

– The reduction of ρk in an unsuccessful step (line 22) only occurs when Rk < 0;
– Sincewe update themodel on every iteration,we only reduceρk after 3 consecutive
unsuccessful iterations; i.e. we only reduceρk whenΔk is small and after themodel
has been updated several times (reducing the likelihood of the unsuccessful steps
being from a bad interpolating set);

– The method for reducing ρk is usually given by ρk+1 = α1ρk , but it changed when
ρk approaches ρend :

ρk+1 =

⎧
⎪⎨

⎪⎩

α1ρk, if ρk > 250ρend ,√
ρkρend , if 16ρend < ρk ≤ 250ρend ,

ρend , if ρk ≤ 16ρend .

(4.12)

– In some calls of the safety phase, we only reduce ρk and Δk , without improving
the geometry of Yk .

4.6 Comparison to DFBOLS and POUNDERS

As has been discussed at length, there are many similarities between DFO-GN and
DFBOLS from Zhang et al. [38]. The theoretical algorithm described in [38] (called
DFLS) allows linear residual models in principle, and its convergence theory covers
this case. However, the implementation of this algorithm, DFBOLS, does not, strictly
speaking, allow linear residual models; instead, it either uses underdetermined or fully
quadratic models for each ri , with between n + 2 and (n + 1)(n + 2)/2 interpola-
tion points. Furthermore, there are no numerical results showing how linear residual
models, or models with n +2 points, perform compared to (underdetermined or fully)
quadratic residual models.

Aside from this, there are several respects in which DFO-GN is simpler than
DFLS/DFBOLS:

– The use of linear models for each residual (2.1) means we require only n + 1
interpolation points, as opposed to between n + 2 and (n + 1)(n + 2)/2 points
needed by DFBOLS. This results in both a larger interpolation system compared
than (2.4) and a larger startup cost (where an initial Y0 of the correct size is
constructed, and r evaluated at each of these points);

– As a result of using linear residualmodels, there is no ambiguity in how to construct
the full model mk (2.5). In DFLS and DFBOLS, simply taking a sum of squares
of each residual’s model gives a quartic. The authors drop the cubic and quartic
terms, and choose the quadratic term fromone of three possibilities [38, eqn. (2.4)],
dependingon‖gk‖ and f (xk). This requires the introductionof three newalgorithm
parameters, each of which may require calibration; and

– DFO-GN’s method for choosing a point to replace when doing model updat-
ing, as discussed in Sect. 4.2, yields a unification of the geometric (‘optimal
Λ-poisedness’) and algebraic (‘stable update’) perspectives on this update. In
DFBOLS, the connection exists but is less direct, as it uses the same method
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as BOBYQA (4.3) with σt ≥ Λt (y+)2. As discussed in [29], this bound may
sometimes be violated as a result of rounding errors, and thus requires an extra
geometry-improving routine to ‘rescue’ the algorithm from this problem.DFO-GN
does not need or have this routine.

By comparison, the first bullet point above does not apply to POUNDERS [33], which
allows linear models initially, and at each iteration constructs models using n + 1 ≤
p ≤ pmax points, where pmax ∈ [n + 2, (n + 1)(n + 2)/2] is a user input and p is
chosendynamically each timeby selecting points from the full history of iterates9 using
the method from [35]. The method of model construction is to use underdetermined
quadratic residual models (with minimal change to the model Hessian), and so while
linear models are used initially, as soon as p > n + 1 for some iteration, quadratic
residualmodels are used in all subsequent iterations. The second point above, however,
does not apply, as POUNDERSuses amodel for the full objectivewhich is equivalent to
a full quadratic approximation (i.e. including all available second-order information).
Similarly to existing literature for DFBOLS [38], no numerical results for using only
linear residual models in POUNDERS are available; in fact, we are not aware of any
existing work showing extensive numerical results or comparisons for POUNDERS.

5 Numerical results

5.1 Solvers tested

In addition to DFO-GN,10 we tested the following solvers:

– DFBOLS, the Fortran implementation from [38], provided by H. Zhang11;
– Py-DFBOLS, our own implementation of DFBOLS, designed to be as similar to
DFO-GN in structure as possible. In particular, it is implemented in Python and
uses the factorization approach to solving the interpolation system (see Sect. 4.4).
As a result, comparing the runtime of DFO-GN with Py-DFBOLS represents a
like-for-like test of algorithm speed;

– BOBYQA[29], a general-objectiveDFOsolver implemented in Fortran byPowell,
available from [39]; and,

– POUNDERS [33], another least-squares DFO code which uses adaptive interpo-
lation models for each residual (see ‘Relevant existing literature’ in Sect. 1 for
details), and is incorporated into PETSc. Testing was performed using the Python
package petsc4py 3.10.1 and the default setting of using at most pmax = 2n + 1
interpolation points at each iteration.

DFO-GN, Py-DFBOLS and POUNDERS all used Python 3.5.2 with NumPy 1.12.1
and SciPy 1.0.1. The parameter values used for DFO-GN are: Δmax = 1010, γdec =
0.5, γinc = 2, γ inc = 4, η1 = 0.1, η2 = 0.7, α1 = 0.1, α2 = 0.5, ωS = 0.1
and γS = 0.5. For all solvers, we use an initial trust region radius of ρ0 = Δ0 =
9 POUNDERS can also choose from a set of points where the user knows the objective value a priori, an
optional input.
10 Version 1.0, available from https://github.com/numericalalgorithmsgroup/dfogn.
11 Private correspondence, May 2015.
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0.1max(‖x0‖∞, 1) and final trust region radius ρend = 10−10 where possible,12 to
avoid this being the termination condition as often as possible.

We tested BOBYQA and (Py-)DFBOLS with n + 2, 2n + 1 and (n + 1)(n + 2)/2
interpolation points. All these solvers use quadratic interpolation models, and do not
allow the use of n + 1 interpolation points. Here, we show the n + 2 and 2n + 1 cases
for DFBOLS and the (n + 1)(n + 2)/2 case for Py-DFBOLS. These were chosen
because Py-DFBOLS performs very similarly to DFBOLS in the case of n + 2 and
2n + 1 points, and outperforms DFBOLS in the (n + 1)(n + 2)/2 case. Similarly, we
show the best-performing 2n + 1 and (n + 1)(n + 2)/2 cases for BOBYQA.

5.2 Test problems andmethodology

We tested the solvers on the test suite from Moré and Wild [20], a collection of 53
unconstrained nonlinear least-squares problems with dimension 2 ≤ n ≤ 12 and
2 ≤ m ≤ 65. For each problem, we optionally allowed evaluations of the residuals ri

to have stochastic noise. Specifically, we allowed the following noise models:

– Smooth (noiseless) function evaluations;
– Multiplicative unbiased Gaussian noise: we evaluate r̃i (x) = ri (x)(1 + ε), where

ε ∼ N (0, σ 2) i.i.d. for each i and x;
– Additive unbiased Gaussian noise: we evaluate r̃i (x) = ri (x) + ε, where ε ∼

N (0, σ 2) i.i.d. for each i and x; and
– Additive χ2 noise: we evaluate r̃i (x) = √

ri (x)2 + ε2, where ε ∼ N (0, σ 2)

i.i.d. for each i and x.
To compare solvers, we use data and performance profiles [20]. First, for each solver

S, each problem p and for an accuracy level τ ∈ (0, 1), we determine the number of
function evaluations Np(S; τ) required for a problem to be ‘solved’:

Np(S; τ) := # objective evals required to get f (xk) ≤ E[ f ∗ + τ( f (x0) − f ∗)],
(5.1)

where f ∗ is an estimate of the true minimum13 f (x∗). A full list of the values used is
provided in Table 2 in Appendix C. We define Np(S; τ) = ∞ if this was not achieved
in the maximum computational budget allowed.

We can then compare solvers by looking at the proportion of test problems solved
for a given computational budget. For data profiles, we normalize the computational
effort by problem dimension, and plot (for solver S, accuracy level τ ∈ (0, 1) and
problem suite P)

dS,τ (α) := |{p ∈ P : Np(S; τ) ≤ α(n p + 1)}|
|P| , for α ∈ [0, Ng], (5.2)

12 POUNDERS does not have this as a user input. Instead we set all gradient tolerances to zero.
13 Note that in [20], and subsequent other papers such as [38], the value f ∗ is usually taken to be the
smallest objective value achieved by any of the solvers under consideration within a fixed budget. The main
motivation in [20] for this choice is for when f is expensive, and so we have small computational budgets
and it is possible that no solver converges. In our setting, this is not the case, so we use our (stronger) choice
of f ∗, which comes from [19] or the results of running these and other (derivative-based) solvers.
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Fig. 1 Performance profile comparison of DFO-GN with BOBYQA, DFBOLS and POUNDERS for low
accuracy τ = 10−1. For the BOBYQA and DFBOLS runs, n + 2, 2n + 1 andO(n2) = (n + 1)(n + 2)/2
are the number of interpolation points

where Ng is the maximum computational budget, measured in simplex gradients
(i.e. Ng(n p + 1) objective evaluations are allowed for problem p).

For performance profiles, we normalize the computational effort by the minimum
effort needed by any solver (i.e. by problem difficulty). That is, we plot

πS,τ (α) := |{p ∈ P : Np(S; τ) ≤ αN∗
p(τ )}|

|P| , for α ≥ 1, (5.3)

where N∗
p(τ ) := minS Np(S; τ) is the minimum budget required by any solver.

Profiles for noisy problems In the case of noisy problems, we ran each solver on
10 instances of each problem (i.e. independent realizations of the random noise in
objective evaluations). For the data profiles, we consider each problem instance as
a separate problem to be ‘solved’; i.e. for the Moré & Wild test set, we plot the
proportion of the 530 problem instances solved within a given computational budget.
For performance profiles, we do the same (i.e. show a proportion of 530 problem
instances), and take N∗

p(τ ) in (5.3) to be the minimum budget required any solver on
any instance of problem p.

5.3 Test results

For our testing, we used a budget of Ng = 200 gradients (i.e. 200(n + 1) objective
evaluations) for each problem, noise level σ = 10−2, and took 10 runs of each solver.14

Most results use an accuracy level of τ = 10−5 in (5.1).

Low accuracy setting Firstly, Fig. 1 shows two performance profiles under the low
accuracy requirement τ = 10−1. Here we see an important benefit of DFO-GN and
POUNDERS compared to BOBYQA andDFBOLS—allowing a smaller interpolation
set means that they can begin the main iteration and make progress sooner. This is

14 Scheduled using [32].
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Fig. 2 Comparison of DFO-GN with BOBYQA, DFBOLS and POUNDERS for smooth objectives, to
accuracy τ = 10−5. For the BOBYQA and DFBOLS runs, n + 2, 2n + 1 andO(n2) = (n + 1)(n + 2)/2
are the number of interpolation points

reflected in Fig. 1, where DFO-GN and POUNDERS are the fastest solvers more
frequently than the others, bothwith smooth and noisy objective evaluations. However,
the performance of POUNDERS is less strong than DFO-GN for larger performance
ratios (i.e. α ≥ 2 in (5.3)). In line with the results from [38], BOBYQA does not
perform as well as POUNDERS, DFBOLS or DFO-GN, as it does not exploit the
least-squares problem structure.

The low accuracy requirement often corresponds in practice to the typical casewhen
the objective/residual evaluations are very expensive, more so than the linear algebra
and storage costs. The limiting factor then is the (small) evaluation budget, and hence
we generally expect objective improvement rather than accurate optimization from
the solver. We can also report that DFO-GN was successfully applied in the expensive
evaluations regime in the context of a practical energy application [2].

High accuracy setting Next, Fig. 2 shows results for accuracy τ = 10−5 and smooth
objective evaluations. Note that our simplification from quadratic to linear residual
models has not led to a loss of performance for obtaining high accuracy solutions, and
produces essentially identical long-budget performance. At this level, the advantage
from the smaller startup cost is no longer seen, but particularly in the performance
profile, we can still see the substantially higher startup cost of using (n + 1)(n + 2)/2
interpolation points.

Similarly, Fig. 3 shows the same plots but for noisy problems (multiplicative Gaus-
sian, additive Gaussian and additive χ2 respectively). Here, DFO-GN suffers a small
performance penalty (of approximately 5–10%) compared to DFBOLS, particularly
when using 2n +1 and (n +1)(n +2)/2 interpolation points, suggesting that the extra
curvature and evaluation information inDFBOLShas some benefit for noisy problems.
Also, the performance penalty is larger in the case of additive noise than multiplica-
tive, and here there is also a similar performance penalty compared to POUNDERS.
Note that additive noise makes all our test problems nonzero residual (i.e. f (x∗) > 0
for the true minimum x∗); however in the next section we show that this is not a key
driver of this differential.
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Fig. 3 Comparison of DFO-GN with BOBYQA, DFBOLS and POUNDERS for objectives with multi-
plicative Gaussian, additive Gaussian and additive χ2 noise with σ = 10−2, to accuracy τ = 10−5. For the
BOBYQA and DFBOLS runs, n +2, 2n +1 andO(n2) = (n +1)(n +2)/2 are the number of interpolation
points

Note also that, although BOBYQA suffers a substantial performance penalty when
moving from smooth to noisy problems, this penalty (compared to DFO-GN and
DFBOLS) is much less for additive χ2 noise. This is likely because this noise model
makes each residual function more complicated by taking square roots, but the change
to the full objective is relatively benign—simply adding χ2 random variables.
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Fig. 4 Performance profile comparison of DFO-GN with BOBYQA, DFBOLS and POUNDERS for
nonzero residual problems only, to accuracy τ = 10−5. For the BOBYQA and DFBOLS runs, n + 2,
2n + 1 andO(n2) = (n + 1)(n + 2)/2 are the number of interpolation points

Nonzero residual problems We saw above that DFO-GN suffered a higher—but still
small—loss of performance, compared to DFBOLS and POUNDERS, for problems
with additive noise. To ascertain if this is because Gauss–Newton methods are known
to have slower asymptotic convergence rates for nonzero residual problems [21], we
extract the performance of the nonzero residual problems only from the test set results
we already presented; Fig. 4 shows the resulting performance profiles for accuracy
τ = 10−5, for smooth objectives and multiplicative Gaussian noise (σ = 10−2).
For multiplicative and additive Gaussian noise, we see for all solvers a worse per-
formance on nonzero residual problems (compared to all problems). However, in all
cases except additive χ2 noise, DFO-GN performs similarly well against DFBOLS
and POUNDERS compared to looking at all problems.

Conclusions to evaluation comparisons The numerical results in this section show that
DFO-GN performs comparably to DFBOLS and POUNDERS in terms of evaluation
counts, and outperforms BOBYQA, in both smooth and noisy settings, and for low and
high accuracy. DFO-GN exhibits a slight performance loss compared to DFBOLS and
POUNDERS for additive noisy problems. We may explain the similar performance of
DFO-GN to DFBOLS and POUNDERS, despite their use of higher order models, as
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A derivative-free Gauss–Newton method 661

being due to the general effectiveness of Gauss–Newton-like frameworks for nonlinear
least-squares, especially for zero-residual problems; and furthermore, by the usual
remit of DFO algorithms in which the asymptotic regimes are not or cannot really be
observed or targeted by the accuracy at which the problems are solved.

We note that we also tested other noise models—such as multiplicative uniform
noise and also biased variants of the Gaussian noise; all these performed either
better (such as in the case of uniform noise) or essentially indistinguishable to the
results already presented above. We also tried other noise variance levels, smaller than
σ = 10−2, for which the performance of both DFO-GN and DFBOLS solvers vary
similarly/comparably. Though an accuracy level τ = 10−5 is common and considered
reasonably high in DFO, to ensure that our results are robust, we also performed the
same tests for higher accuracy levels τ ∈ {10−7, 10−9, 10−11}. The resulting profiles
are given in Appendix F of the extended technical report [4] of this paper. For smooth
problems, DFO-GN is still able to solve essentially the same proportion of problems
as (Py-)DFBOLS. For noisy problems, the results are more mixed: overall, DFO-GN
does slightly worse for Gaussian noise, but slightly better for χ2 noise. These results
are the same when looking at all problems, or just nonzero residual problems. This
reinforces our previous conclusions, and gives us confidence that a Gauss–Newton
framework for DFO is a suitable choice, and is robust to the level of accuracy required
for a given problem.

5.4 Runtime comparison

The use of linear models in DFO-GN also leads to a reduced linear algebra cost. As
described in Sect. 4.4, the interpolation system for DFO-GN is of size n, compared to
(Py-)DFBOLS,where the system is of size p+n+1 for p ≥ n+2 interpolation points;
i.e. the (Py-)DFBOLS interpolation system is at least twice the size of the DFO-GN
system. Depending on which preprocessing step is used (factorization in Py-DFBOLS
or low-rank updates in DFBOLS) and the size of m, we would therefore expect the
computational cost of solving the (Py-)DFBOLS system to be at least 4–8 times larger
that of DFO-GN (depending on whether the preprocessing or the solve step dominates
the cost). To verify this, in this section we compare the runtime of DFO-GN with Py-
DFBOLS. Since DFBOLS is implemented in Fortran, a runtime comparison against
the Python implementation of DFO-GN will not produce meaningful results. As Py-
DFBOLS uses the more expensive factorization-based preprocessing step, we would
expect the performance penalty to be nearer the upper end of the 4–8 times range (as
a minority of the Moré & Wild test problems have m ≥ p + n).

The wall time required by each solver to run the above testing (with a budget of
200(n + 1) objective evaluations) on a Lenovo ThinkCentre M900 (with one 64-bit
Intel i5 processor, 8GB of RAM), is shown in Table 1 for both smooth and noisy
evaluations. We find that DFO-GN is 7–8 times faster than Py-DFBOLS with n + 2
points, 13–23 times faster than Py-DFBOLS with 2n + 1 points, and 59–444 times
faster than Py-DFBOLS with (n +1)(n +2)/2 points. In all cases, this is a substantial
improvement, particularly given the small difference in performance (measured in
function evaluations) between DFO-GN and (Py-)DFBOLS described in Sect. 5.3.

123



662 C. Cartis, L. Roberts

Ta
bl
e
1

R
un
tim

es
an
d
to
ta
le
va
lu
at
io
ns

of
al
lo

bj
ec
tiv

es
(u
nt
il
so
lv
er

te
rm

in
at
io
n,

no
tn

ec
es
sa
ri
ly

a
sp
ec
ifi
c
ac
cu
ra
cy

to
le
ra
nc
e)
,f
or

D
FO

-G
N
an
d
Py

-D
FB

O
L
S

So
lv
er

M
ea
su
re

Sm
oo
th

M
ul
t.
G
au
ss
ia
n

A
dd
.G

au
ss
ia
n

A
dd
.χ

2

D
FO

-G
N

R
un

tim
e

51
s
[1
x]

91
s
[1
x]

87
s
[1
x]

12
1s

[1
x]

To
ta
le
va
ls

20
55

0
[1
x]

47
59

1
[1
x]

48
13

8
[1
x]

67
36

0
[1
x]

Py
-D

FB
O
L
S

n
+

2
R
un

tim
e

40
2s

[7
.9
x]

70
0s

[7
.7
x]

61
1s

[7
x]

97
1s

[8
x]

To
ta
le
va
ls

16
83

2
[0
.8
x]

52
13

1
[1
.1
x]

52
39

5
[1
.1
x]

93
69

2
[1
.4
x]

Py
-D

FB
O
L
S
2n

+
1

R
un

tim
e

70
5s

[1
3.
8x

]
20

76
s
[2
2.
7x

]
19

11
s
[2
2x

]
22

42
s
[1
8.
6x

]

To
ta
le
va
ls

14
77

7
[0
.7
x]

78
00

0
[1
.6
x]

81
70

6
[1
.7
x]

11
63

23
[1
.7
x]

Py
-D

FB
O
L
S

O
(n

2
)

R
un

tim
e

30
42

s
[5
9.
4x

]
36

98
2s

[4
04

.9
x]

38
48

5s
[4
43

.8
x]

41
72

9s
[3
45

.5
x]

To
ta
le
va
ls

16
80

2
[0
.8
x]

20
92

23
[4
.4
x]

23
58

74
[4
.9
x]

28
38

97
[4
.2
x]

A
ll
ru
ns

us
ed

a
m
ax
im

um
bu
dg

et
of

20
0(

n
+

1)
ob
je
ct
iv
e
ev
al
ua
tio

ns
,a
nd

no
is
y
re
su
lts

ar
e
a
to
ta
lf
ro
m

ru
nn
in
g
10

in
st
an
ce
s
of

ea
ch

pr
ob
le
m

w
ith

no
is
e
le
ve
l
σ

=
10

−2
.

V
al
ue
s
ar
e
ra
w
(r
un
tim

e
in

se
co
nd
s)
an
d
ra
tio

co
m
pa
re
d
to

D
FO

-G
N
.F

or
Py

-D
FB

O
L
S,

O
(n

2
)
=

(n
+

1)
(n

+
2)

/
2
in
te
rp
ol
at
io
n
po

in
ts

123



A derivative-free Gauss–Newton method 663

101 102 103

n

10−3

10−2

10−1

10 0

10 1

10 2

R
un

ti
m

e
pe

r
it

er
at

io
n

(s
)

DFO-GN
DFBOLS n + 2

Runtime per iteration

101 102 103

n

107

108

109

1010

M
ax

M
em

or
y

(B
)

DFO-GN
DFBOLS n + 2

Peak memory usage

Fig. 5 Comparison of runtime and peak memory usage of DFBOLS (original Fortran implementation with
n+2 interpolation points) and DFO-GN for solving the discretized integral equation, as problem dimension
n increases. The largest values tested were n = 1400 for DFBOLS and n = 2500 for DFO-GN

In Table 1, we also show the total number of objective evaluations required by each
solver (summed over all instances of all problems). We see that DFO-GN uses slightly
more evaluations than Py-DFBOLS for smooth problems, and fewer evaluations (in
some cases substantially so) for noisy problems. Firstly, the fact that this does not
correlate with runtime indicates that objective evaluation cost is not affecting the
runtime results. Secondly, since Sect. 5.3 shows that DFO-GN and (Py-)DFBOLS
require a similar number of evaluations to achieve a given accuracy level, this is
perhaps evidence that there is scope to implementing more sophisticated termination
criteria in both solvers.

We recall again our earlier comment that a reduced runtime due to linear algebra
is less important/dominant when objective evaluations are very expensive; see Fig. 1
and associated comments.

5.5 Scalability features

We saw in Sect. 5.4 that DFO-GN runs faster due to the lower cost of solving the
interpolation linear system. Another important benefit is that storing the interpola-
tion models for each residual requires only O(mn) memory, rather than O(mn2)

for quadratic models. These two observations together suggest that DFO-GN should
scale to large problems better than DFBOLS—in this section we demonstrate this.
We consider Problem 29 from Moré, Garbow & Hillstrom [19] (which is Problem 33
(integreq) in the CUTEst set in Table 3).

This is a zero-residual least-squares problem with m = n variables for solving
a one-dimensional integral equation, using an n-point discretization of (0, 1). We
compare DFO-GN and DFBOLS with n +2 interpolation points, as it has the smallest
memory usage and runtime of all possible values.

In Fig. 5 we compare the per-iteration runtime and peakmemory usage of DFBOLS
and DFO-GN as n increases. Note that we are comparing DFO-GN (implemented in
Python) against DFBOLS (implemented in Fortran) rather than Py-DFBOLS (as used
in Sect. 5.4), to put ourselves at a substantial disadvantage. We see that for small
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Fig. 6 Comparison of DFO-GNwith DFBOLS for smooth objectives from the set of medium-sized CUTEst
problems, to accuracy τ = 10−5. For the DFBOLS runs, n + 2, 2n + 1 are the number of interpolation
points

n, DFBOLS has significantly lower runtime and memory requirements than DFO-
GN (which is unsurprising, since it is implemented in Fortran rather than Python).
However, as expected, both the runtime and memory usage increases much faster for
DFBOLS than for DFO-GN as n is increased. For n > 1200, DFBOLS exceeds the
memory capacity of the system. At this point, it has to store data on disk, and as a result
the runtime increases very quickly. DFO-GN does not suffer from this issue, and can
continue solving problems quickly for substantially larger n. For instance, DFO-GN
solves the n = 2500 problem over 2.5 times faster per iteration than DFBOLS solves
the much smaller n = 1400 problem.

Similarly to before, it is important to gain an understanding ofwhether this improved
scalability comes at the cost of performance. To assess this, we consider a set of 60
medium-sized problems (25 ≤ n ≤ 120 and 25 ≤ m ≤ 400, with n ≈ 100 for
most problems) from the CUTEst test set [13]. The full list of problems is given in
Table 3 in Appendix C. For these problems, we compare DFO-GN with DFBOLS
using a smaller budget of 50(n + 1) evaluations, commensurate with the greater cost
of objective evaluation. Given this small budget, we only test DFBOLS with n + 2
and 2n + 1 interpolation points; using (n + 1)(n + 2)/2 interpolation points would
mean in most cases the full budget is entirely used building the initial sample set.

In Fig. 6, we show data and performance profiles for accuracy τ = 10−5. As
before, we see that DFO-GN has very similar performance to DFBOLS, and although
we have gained improved scalability, we have not lost in terms of performance on
medium-sized test problems.

6 Concluding remarks

It is well-known that, for nonlinear least-squares problems, using only linear models
for each residual is sufficient to approximate the objective well, especially for zero-
residual problems. This forms the basis of the derivative-based Gauss–Newton and
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Levenberg–Marquardtmethods, andhasmotivatedour publicly-available15 derivative-
free, model-based trust-region variant here, called DFO-GN. This method is based on
the framework from [38], which in principle allows linear, or very close to linear,
residual models, but numerically it only assesses the performance of partially or fully
quadratic residual models.

We extend the theoretical results of [38] to include that the whole sequence, not just
a subsequence, of the gradients at the iterates converges to zero, as well as a worst-case
complexity result.We also present the first numerical tests of linear residualmodels in a
DFO context, and we show that DFO-GN reduces both the computational cost of solv-
ing the interpolation problem (leading to a runtime reduction of at least a factor of 7)
and the memory cost of storing the models (from O(mn2) to O(mn)). These savings
result in a substantially faster runtime and improved scalability of DFO-GN com-
pared to DFBOLS, the implementation from [38] which uses (possibly significantly)
underdetermined quadratic residual models. Furthermore, the simpler local models do
not adversely affect the algorithm’s performance numerically, in terms of evaluation
counts: DFO-GN performs as well as DFBOLS and POUNDERS, the implementation
from [33], on smooth test problems from the Moré & Wild and CUTEst collections.
When the objective has noise, DFO-GN suffers a small performance penalty compared
to DFBOLS and POUNDERS, which is larger for additive than multiplicative noise,
but not when considering only nonzero residual problems (compared to all problems).
Nonetheless, this, together with the substantial improvements in runtime and scala-
bility, make DFO-GN an appealing choice for both zero and nonzero residuals, and
in the presence of noise.

We delegate to future work showing a local quadratic rate of convergence for DFO-
GN when applied to nondegenerate zero-residual problems, and generally improving
the performance of DFO methods in the presence of noise.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Proof of Lemma 3.3

This proof is similar to [38, Lemma 4.3] and [9, Theorems 2.11 and 2.12]; but the
precise values of the constants matter, so we include the details here. Define B :=
B(xk,Δk) for convenience. We recall the standard bound [21, Appendix A]

‖r(y) − r(xk) − J (xk)(y − xk)‖ ≤ 1

2
L J ‖y − xk‖2. (A.1)

From the interpolation conditions (2.3), we have

Jk(yt − xk) = r(yt ) − r(xk), for t = 1, . . . , n. (A.2)

15 At https://github.com/numericalalgorithmsgroup/dfogn.
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Using (A.1), we compute for any t = 1, . . . , n,

‖[Jk − J (xk)](yt −xk)/Δk‖ = Δ−1
k ‖r(yt )−r(xk)− J (xk)(yt −xk)‖≤ 1

2
L J Δk .

(A.3)

Let Ŵk be the interpolation matrix of the system (2.4) scaled byΔ−1
k . Considering the

matrix [Jk − J (xk)]Ŵ �
k , with columns [Jk − J (xk)](yt − xk)/Δk , we have

‖[Jk − J (xk)]Ŵ �
k ‖2 ≤ ‖[Jk − J (xk)]Ŵ �

k ‖2F
=

n∑

t=1

‖[Jk − J (xk)](yt − xk)/Δk‖2, (A.4)

and so using the identity ‖Ŵ −1
k ‖ = ‖Ŵ −�

k ‖, we get

‖Jk − J (xk)‖ ≤ ‖[Jk − J (xk)]Ŵ �
k ‖ · ‖Ŵ −�

k ‖ ≤ 1

2
L J

√
n‖Ŵ −1

k ‖Δk . (A.5)

Thus we conclude that for any y ∈ B

‖Jk − J (y)‖ ≤ ‖Jk − J (xk)‖ + ‖J (y) − J (xk)‖
≤ L J

(
1 + 1

2

√
n‖Ŵ −1

k ‖
)

Δk . (A.6)

Since Yk is Λ-poised in B, we have ‖Ŵ −1
k ‖ = O(Λ) from [9, Theorem 3.14]. Thus

(2.14) holds with κr
eg := L J

(
1 + 1

2

√
nC

)
, where C = O(Λ). Next, we prove (2.13)

by computing

‖mk(y − xk) − r(y)‖ = ‖r(y) − r(xk) − Jk(y − xk)‖, (A.7)

≤ ‖r(y) − r(xk) − J (xk)(y − xk)‖
+ ‖J (xk) − Jk‖ · ‖y − xk‖, (A.8)

≤
(

L J

2
+ κr

eg

)
Δ2

k, (A.9)

where we use (2.14) and (A.1). Hence we have (2.13) with κr
e f = κr

eg + L J /2,
as required. Since mk is fully linear, we also get from (2.14) the bound ‖Jk‖ ≤
‖J (xk) − Jk‖ + ‖J (xk)‖ ≤ κr

egΔmax + Jmax , so ‖Jk‖ is uniformly bounded for all k.

Since Hk = J�
k Jk , this means that ‖Hk‖ = ‖Jk‖2 is uniformly bounded for all k. To

prove full linearity of mk , we first compute

‖∇mk(y − xk) − ∇ f (y)‖ = ‖∇ f (y) − J�
k r(xk) − J�

k Jk(y − xk)‖, (A.10)

≤ ‖∇ f (y) − ∇ f (xk)‖ + ‖(J (xk) − Jk)
�r(xk)‖

+ ‖J�
k Jk‖ · ‖y − xk‖, (A.11)

≤ L∇ f Δk + κr
egrmaxΔk +

(
κr

egΔmax + Jmax

)2
Δk,

(A.12)
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recovering (2.12) with κeg = L∇ f + κr
egrmax + (κr

egΔmax + Jmax )
2, as required.

Lastly, to show (2.11), we recall the scalar version of (A.1)

| f (y) − f (xk) − ∇ f (xk)
�(y − xk)| ≤ 1

2
L∇ f ‖y − xk‖2. (A.13)

We use this and (2.12) to compute

|mk(y − xk) − f (y)| =
∣∣∣∣ f (y) − f (xk) − g�

k (y − xk) − 1

2
(y − xk)

� Hk(y − xk)

∣∣∣∣ ,

(A.14)

≤
∣∣∣ f (y) − f (xk) − ∇ f (xk)

�(y − xk)

∣∣∣

+
∥∥∥∥∇ f (xk) − gk − 1

2
Hk(y − xk)

∥∥∥∥ · ‖y − xk‖, (A.15)

≤ 1

2
L∇ f Δ

2
k + [‖∇ f (xk) − ∇mk(y − xk)‖

+1

2
‖Hk‖ · ‖y − xk‖

]
· Δk, (A.16)

≤ 1

2
L∇ f Δ

2
k +

[
κegΔk + 1

2
(κr

egΔmax + Jmax )
2Δk

]
Δk,

(A.17)

and so we have (2.11) with κe f = κeg + L∇ f /2 + (κr
egΔmax + Jmax )

2/2. ��

B Geometry improvement in criticality phase

Here, we describe the geometry-improvement step performed in the criticality phase
of Algorithm 1, and prove its convergence. The proof of Lemma B.1 can be derived
from that of [9, Lemma 10.5].

Algorithm 2 Geometry-Improvement for Criticality Phase

Require: Iterate xk , initial set Yk and trust region radius Δini t
k .

Parameters are μ > 0, ωC ∈ (0, 1) and poisedness constant Λ > 0.

1: Set Y (0)
k = Yk .

2: for i = 1, 2, . . . do
3: Form Y (i)

k by modifying Y (i−1)
k until it is Λ-poised in B(xk , ωi−1

C Δini t
k ).

4: Solve the interpolation system for Y (i)
k and form m(i)

k (2.5).

5: if ωi−1
C Δini t

k ≤ μ‖g(i)
k ‖ then

6: return Y (i)
k , m(i)

k , Δk ← ωi−1
C Δini t

k .
7: end if
8: end for
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We recall from Lemma 3.3 that if Y (i)
k is Λ-poised in B(xk, ω

i−1
C Δini t

k ), then m(i)
k

is fully linear in the sense of Definition 2.3, with associated constants κe f and κeg in
(2.11) and (2.12) respectively given by (3.3).

Lemma B.1 Suppose ‖∇ f (xk)‖ ≥ ε > 0. Then for any μ > 0 and ωC ∈ (0, 1),
Algorithm 2 terminates in finite time with Yk Λ-poised in B(xk,Δk) and Δk ≤ μ‖gk‖
for any μ > 0 and ωC ∈ (0, 1). We also have the bound

min

(
Δini t

k ,
ωCε

κeg + 1/μ

)
≤ Δk ≤ Δini t

k . (B.1)

Proof First, suppose Algorithm 2 terminates on the first iteration. Then Δk = Δini t
k ,

and the result holds. Otherwise, consider some iteration i where Algorithm 2 does
not terminate; that is, where ωi−1

C Δini t
k > μ‖g(i)

k ‖. Then since m(i)
k is fully linear in

B(xk, ω
i−1
C Δini t

k ), we have

ε ≤ ‖∇ f (xk)‖ ≤ ‖∇ f (xk) − g(i)
k ‖ + ‖g(i)

k ‖ ≤
(

κeg + 1

μ

)
ωi−1

C Δini t
k , (B.2)

or equivalently ωi−1
C ≥ ε

(κeg + 1/μ)Δini t
k

. That is, if termination does not occur on

iteration i , we must have

i ≤ 1 + 1

| logωC | log
(

(κeg + 1/μ)Δini t
k

ε

)
, (B.3)

so Algorithm 2 terminates finitely.We also haveωi−1
C Δini t

k ≥ ε

κeg + 1/μ
, which gives

(B.1). ��

C Test problems

See Tables 2 and 3.
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