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Abstract

Primal heuristics play an important role in the solving of mixed integer programs
(MIPs). They often provide good feasible solutions early and help to reduce the time
needed to prove optimality. In this paper, we present a scheme for start heuristics
that can be executed without previous knowledge of an LP solution or a previously
found integer feasible solution. It uses global structures available within MIP solvers
to iteratively fix integer variables and propagate these fixings. Thereby, fixings are
determined based on the predicted impact they have on the subsequent domain prop-
agation. If sufficiently many variables can be fixed that way, the resulting problem is
solved first as an LP, and then as an auxiliary MIP if the rounded LP solution does
not provide a feasible solution already. We present three primal heuristics that use
this scheme based on different global structures. Our computational experiments on
standard MIP test sets show that the proposed heuristics find solutions for about 60%
of the instances and by this, help to improve several performance measures for MIP
solvers, including the primal integral and the average solving time.

Keywords Mixed integer programming - Primal heuristics - Start heuristics -
Fix-and-propagate - Large neighborhood search - IP - MIP

Mathematics Subject Classification 90C11 - 90C10 - 90C59

B Gerald Gamrath
gamrath@zib.de

Timo Berthold
timoberthold @fico.com

Stefan Heinz
stefanheinz @fico.com

Michael Winkler

winkler @ gurobi.com

Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany

2 Fair Isaac Germany GmbH, c/o ZIB, Takustr. 7, 14195 Berlin, Germany
3 Gurobi GmbH, c/o ZIB, Takustr. 7, 14195 Berlin, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-019-00159-1&domain=pdf
http://orcid.org/0000-0001-6141-5937

676 G. Gamrath et al.

1 Introduction

Mixed integer linear programming problems (MIPs) minimize (or maximize) a linear
objective function subject to linear constraints and integrality restrictions on some or
all of the variables. More formally, a MIP is stated as follows:

zuip =minfc! x i Ax <b, 0 <x <u,x eR' x; € Zforalli e Z} (1)

with objective function ¢ € R”, constraint matrix A € R™*", and constraint right-
hand sides b € R™. We allow lower and upper bounds £, u € R” on variables, where
R:=RU {#£ o0}, and the restriction of a subset of variables Z € N = {1, ..., n} to
integral values. In the remainder of this paper, we denote by P(c, A, b, ¢, u, N',T) a
MIP of form (1) in dependence on the provided data.

Very powerful generic solvers for MIPs have been developed over the last decades,
which are used widely in research and practice [8,22,50]. These solvers are based on
the branch-and-bound algorithm [26,48], which is intertwined with various extensions,
see [8].

Branch-and-bound profits directly from finding good solutions as early as possible.
On the one hand, these solutions originate from integral solutions to the linear program-
ming (LP) relaxation. The LP relaxation P(c, A, b, £, u, N, #) is obtained from (1)
by omitting the integrality restrictions and is repeatedly solved for (sub-)problems
during the branch-and-bound search to provide solution candidates and lower bounds.
On the other hand, so-called primal heuristics try to construct new feasible solutions or
improve existing ones. Primal heuristics are incomplete methods without any success
or quality guarantee which nevertheless are beneficial on average. For more details on
primal heuristics, we refer to [14,16,32]. In this paper, we introduce three novel heuris-
tics which combine a fix-and-propagate scheme [8,20] with the large neighborhood
search (LNS) paradigm, see [27]. The former is typically used for before-LP heuristics
and iteratively fixes a variable and propagates this change to apply all implied changes
to the domains of other variables. The latter defines a sub-problem, the neighborhood,
by adding restrictions to the problem, and then solves this sub-problem as a MIP. A
more detailed discussion of these heuristic concepts is given in Sect. 2.

By modeling a specific problem as a MIP and solving it with a MIP solver, one profits
from the decades of developments within this area. However, knowledge about the
structure of the problem which could be exploited by a problem specific approach can
hardly be fed into a MIP solver due to the generality of the approach. MIP solvers try
to partially compensate this by detecting some common structures within the problem
and exploiting them in the solving process. Examples for this are multi-commodity
flow subproblems [7] and permutation structures [59]. This detection is often done in
the presolving phase, which is a preprocessing step trying to remove redundancies from
the model and to tighten the formulation. An overview of different global structures
in MIP solvers and details about three of them, the clique table, the variable bound
graph, and the variable locks, are given in Sect. 3.

The heuristics presented in this paper use these global structures to determine the
fixing order and fixing values for the variables. While it is a known approach in
MIP heuristics to apply domain propagation to identify the direct consequences of a
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fixing and tighten domains of other variables accordingly, our new heuristics take a
step further than existing methods and make domain propagation their driving force.
Rather than supporting the fixing scheme by domain propagation, the heuristics base
their fixing scheme on the implications that a variable fixing will have, predicted via
global structures. After the fix-and-propagate step, the remaining problem is solved as
an LP and the LP solution is rounded. If this did not provide a feasible solution already,
the problem obtained after the fix-and-propagate phase is solved as an auxiliary MIP
(called sub-MIP in the following).

A detailed description of the general scheme of the structure-driven fix-and-
propagate heuristics is discussed in Sect. 4. The three instantiations of the heuristic
scheme for the three discussed global structures are presented in Sects. 5 to 7. They
have been implemented within the academic MIP solver SCIP [2]. The impact of the
heuristics on the overall solving process of SCIP is evaluated by the computational
experiments presented in Sect. 8. Finally, Sect. 9 gives our conclusions and an outlook.

Previous work by the authors [36] introduced prior versions of primal heuristics
based on the clique table and the variable bound graph and gave a preliminary compu-
tational evaluation of the heuristics. The present paper extends this work significantly.
First, a third heuristic is introduced which is based on variable locks. Second, the two
former heuristics have been significantly improved. The clique-based fixing scheme
works directly on the cliques now rather than computing a clique partition. Cliques
are also taken into account for the topological sorting of the variable bound graph (see
Sect. 6). In all heuristics, infeasible fixings are now undone by a backtracking step in
order to continue the fixing phase. This leads to higher fixing rates and more solutions
being found by LP solving rather than the more expensive sub-MIP solve. Finally, we
perform a thorough computational study to analyze the effort and success rates of the
heuristics.

2 Primal heuristics and large neighborhood search for MIP

Primal heuristics are algorithms that try to find feasible solutions of good quality
for a given optimization problem within a reasonably short amount of time. There is
typically no guarantee that they will find any solution, let alone an optimal one.

For mixed integer linear programs (MIPs) it is well known that general-purpose
primal heuristics like the Feasibility Pump [3,29,34] can find high-quality solutions
for a wide range of problems. Over time, primal heuristics have become a substantial
ingredient of state-of-the-art MIP solvers [14,24].

The last 15years have seen various publications on general-purpose heuristics
for MIPs, including [3,4,9,12,13,17-19,21,28,33,34,38,39,41-43,46,49,56,58,59,61].
For an overview, see [14,16,51].

Large neighborhood search lies at the heart of many MIP heuristics, such as Local
Branching [30], RINS [27], Crossover [ 14], DINS [39], RENS [17], Proximity Search [33],
and Analytic Center Search [21]. The main idea of LNS is to restrict the search for
“good” solutions to a neighborhood centered at a particular reference point. This is
typically the incumbent or another feasible solution, but it may as well be an infeasible
integer point or a partial solution, see [31]. The hope is that the restricted search space
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makes the sub-problem much easier to solve, while still providing solutions of high
quality. Of course, these restricted sub-problems do not have to be solved to optimality;
they are mainly searched for an improving solution.

DINS, RINS, RENS, Crossover, and Analytic Center Search define their neighborhoods
by variable fixings. LNS heuristics that are based on variable fixings suffer from an
inherent conflict: the original search space should be significantly reduced; thus, it
seems desirable to fix a large number of variables. At the same time, the more variables
get fixed, the higher is the chance that the sub-problem does not contain any improving
solution or even becomes infeasible.

The present paper addresses this issue by applying a fix-and-propagate scheme that
is guided by global structures. The hope is that this scheme maintains feasibility of
the restricted search space while still reducing it significantly through the means of
domain propagation. The fix-and-propagate procedure can potentially find a complete
assignment of the variables or end up with an empty search space; in either case, the
suggested heuristics will terminate. If neither is the case, a large neighborhood search
will be conducted on the restricted search space.

3 Global structures in MIP solvers

Mixed integer programs are restricted to linear constraints, a linear objective, and inte-
grality conditions. This makes MIP solvers easily accessible and exchangeable if a MIP
model is at hand. From the modeling point of view, however, there is hardly any pos-
sibility to pass additional structural information to a solver, e.g., that and how certain
model variables are connected via the combinatorics of a network structure. Mod-
ern MIP solvers aim at detecting common structures within a model and use them for
heuristics, cutting plane separation or presolving. Examples of such global information
include cliques, implications, and variable bound constraints (see [2,10,54]), multi-
commodity flow structures [7], permutation structures [59], and symmetries [55].
Multi-commodity flows and permutations are examples of rather specific constructs
that occur in only a handful of models—but are crucial for solving them. Cliques and
variable bound constraints, in contrast, can be found in many MIPs of different types.
So far, they have been mainly used for cutting plane generation and domain propaga-
tion, see, e.g., [2]. The remainder of the section explains three global structures in more
detail: the clique table and the variable bound graph, both detected during presolving,
and the variable locks, which capture how many constraints restrict a variable.

3.1 The clique table

A clique is a set C of binary variables of which at most one variable can be set to one,
see [2,10]. A clique can be given directly as a linear inequality ) ; .~ x; < 1 or derived
from more general constraints such as knapsacks: given a constraint ) ;. ; w;x; < C
with binary variables x;, i € J, each subset C € J for which w; + wy > C for all

(j, k) € CxC defines a clique. In addition, presolving techniques such as probing [60]
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can be used to detect cliques which are given implicitly and cannot be extracted directly
from a single model constraint.

Similarly, negated cliques [62] can be extracted from the problem. A negated
clique is a set of binary variables of which at most one variable can be set to
zero. When combining these two types of cliques, we obtain the general form
Yicc+ Xi + 2 jec-(1 — x;) < 1. This can be transferred back to the first case by
introducing negated variables of the form x! := 1 — x; foralli € J~. For the ease of
presentation, we will therefore only consider simple cliques in the remainder of this
paper.

In modern MIP solvers, the set of all detected cliques is stored in the so-called
clique table. This global structure forms a relaxation of the MIP and is used by solver
components, e.g., to create clique cuts [45] or to deduce stronger reductions in pre-
solving and propagation [5,60]. In Sect. 5, we will show how the clique table can be
used to guide a fix-and-propagate heuristic.

3.2 The variable bound graph

Variable bound constraints are linear inequalities which contain exactly two variables,
see [2,54]. Typical examples for such constraints are precedence constraints on start
time variables in scheduling or big-M constraints modeling fixed-costs in production
planning. Depending on the sign of the coefficient, the variables bound each other. For
example, a constraint ax + by > ¢ with a > 0 implies that x is bounded from below
by ¢ — g y. If a < 0, the latter provides an upper bound on x. These dependencies
are called variable bound relations. They express the dependency of one bound of a
variable on a bound of another variable. We will use the term vbound when referencing
variable bound relations in the following.

Similar to the clique information, vbounds cannot only be deduced from variable
bound constraints but can also be identified within more general constraints or during
presolving, e.g., by probing. They are exploited by different solver components, e.g.,
for c-MIR cut separation, where they can be used to replace non-binary variables with
binary ones [54]. In order to make vbounds available for those components, they can be
stored in a global structure, the variable bound graph. In this directed graph, each node
corresponds to the lower or upper bound of a variable and each vbound is represented
by an arc pointing from the influencing bound to the dependent bound. This graph
generalizes the mixed conflict graph introduced in [11] which is used to generate
cutting planes for the mixed vertex packing problem. While the mixed conflict graph
represents variable bounds between two binary variables or a binary and a continuous
variable, the variable bound graph covers dependencies between all types of variables
(possibly excluding those between binary variables which are already captured by the
clique table).

For an example of a variable bound graph, see Fig. 1. We regard three constraints
on variables x, y, and z, as shown in part (a). Each of these constraints provides two
bounds on the involved variables as stated in part (b). Thereby, vbounds (1a) and (1b)
are derived from constraint (1), (2a) and (2b) from (2), and (3a) and (3b) from (3).
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r—2y< 3 (1)
r+22< 2 (2)
z+3y< 6 (3)

(a) constraint set.

x <2y+3 (la)
y > 52— 3 (1b)
x < 2-—2z (2a)
z<1- 3z (2b)
z < 6—3y (3a)
y<2— gz (3b)

(b) vbounds.

(¢) variable bound graph.

Fig.1 Example of a variable bound graph

The resulting variable bound graph is illustrated in part (c). Each arc is labeled with
the vbound it represents.

If a bound of a variable is tightened, implications can be read from this graph by
following all paths starting at the corresponding node. Therefore, the graph can be used
to compute an estimate of the impact that a bound change will have. This observation
is the basis for the variable-bound-driven fix-and-propagate heuristic presented in
Sect. 6.

3.3 Variable locks

In contrast to the two previous structures, variable locks are directly defined by
the constraint matrix. They are a measure of how many constraints may block an
increase or decrease of the value of a variable. In case of a MIP of form (1) with only
<-constraints, the number §i+ of up-locks of a variable x; is the number of constraints
in which this variable has a positive coefficient a;; , while the number ¢, of down-locks
counts the number of constraints with a negative coefficient of the variable. A more
general definition for variable locks in constraint integer programming is given in [2].
In this paper, however, we focus on MIP and can thus use the simple definition above.
In the special case that a variable has no locks in one direction, its value in a solution
can be moved into this direction without rendering a constraint infeasible. A simple
rounding heuristic was introduced in [2] which is based on this argument. On the other
hand, duality fixing [35] fixes variables to their bound if they have no locks in that
direction and the objective coefficient has the right sign. The variable-locks-driven fix-
and-propagate heuristic presented in Sect. 7 uses the variable locks to decide which
variable is most influential and to which value it should be fixed to retain feasibility.

4 A framework for structure-driven fix-and-propagate heuristics

In this section, we present a new primal heuristic scheme for mixed integer program-
ming which is based on global structures collected by MIP solvers. It forms the basis
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for the three new primal heuristics discussed in the next sections which have been
implemented in the academic MIP solver SCIP [2].

The general scheme is illustrated in Algorithm 1. In a first step, a subset of
the integer variables is fixed based on the respective structure (lines 3—16). The
structure_fixing method (line 5) is called in each iteration and determines
the fixing based on the given global structure. It returns the index k of a variable that
should be fixed to one of its two bounds and whether the variable is supposed to be
fixed to the lower or upper bound. Additionally, the method gives back a return value
result, whichis either continue, solve LP,or stop. The default return value
is continue, which just continues the fix-and-propagate process. On the other hand,
stop and solve LP will both stop the fixing phase, see line 6, and go directly to the
LP solving starting in line 17. The latter triggers the LP solve in any case, while with
a stop return value, the usual checks that the problem was reduced sufficiently need
to be passed, see below for more details. After the fixing is applied (line 7), domain
propagation is performed (line 8). This uses a method domain_propagation,
which performs domain propagation on the given MIP and returns the updated MIP
as well as the information whether an infeasibility was detected during propagation.
Propagation can work directly on the global structure, but also works on all other
constraints of the model and can identify reductions that do not originate from the
regarded global structure. By default, we limit the domain propagation call to per-
form only two rounds of propagation to avoid performance issues. Nevertheless, this
is usually enough to detect trivial infeasibilities and apply implied bound changes on
other variables—those contained in the global structure, but also other variables in the
problem.

If domain propagation detects an infeasibility for the current assignment of vari-
ables, we backtrack one level, i.e., we undo the last fixing as well as the domain
reductions deduced from it. Then, we remove the fixing value that led to the infea-
sibility from the domain of the respective variable and propagate this reduction (see
lines 9—13). If the propagation detects infeasibility for this problem as well, one of the
assignments we did before must have caused the infeasibility (or the global problem
is already infeasible). We do not backtrack several levels in this case in order to avoid
too much effort being spent before finding the invalid assignment but instead stop
the heuristic immediately (line 14). If the updated problem is feasible, however, we
continue with the fix-and-propagate procedure.

Note that the need to backtrack repeatedly indicates that the global structure used by
the heuristics is missing essential components of the problem and directs the search to
awrong region. Therefore, Algorithm 1 is passed a limit « on the number of backtracks
performed. By default, we set k = 10. If this number of backtracks is reached, the
fix-and-propagate phase is stopped even if there are unfixed integer variables left in the
structure (line 16). Otherwise, the fix-and-propagate phase is iterated until all variables
in the global structure are fixed.

After the fixing phase, we check its success. For this, we compare the number of
fixed integer variables to the total number of integer variables (line 17). Ideally, the
heuristic fixed all integer variables, but it may happen that some of the variables are
not contained in the global structure employed for the fixing process, or that the fixing
phase stopped prematurely due to the backtrack limit or the result value being
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Algorithm 1: Generic structure-driven fix-and-propagate heuristic

input : - MIPP(c, A, b, ¢,u, N,T)
- fixing thresholds «,
- backtrack limit
- global structure S

output : - feasible solution or NULL, if no solution was found
1 begin
2 back < 0, result < stop

// 1. try to fix all integer variables in the structure
3 while (i e ZNS | ¢; < u;} # ¥ do

4 (€, i) < (&, u)
// get variable fixing based on global structure
5 (k, lower, result)<« structure_fixing(P(c, A, b, ¢, u, N',I),S)
// fix variable
if result # continue then break
7 if Iower then i) < £ else Zk <~ uy
// perform domain propagation
8 (P(c, A, b, L, i, N, T), inf) < domain_propagation(P(c, A, b, L, i, N, T))
// infeasibility detected: backtrack and exclude infeasible
value
9 if inf then
10 back <« back + 1
11 (@, i) < (¢, u)
12 if JTower then f < (i + 1 else i < ux — 1
// perform domain propagation
13 (P(c, A, b, €, i, N, T), inf) <«
domain_propagation(P(c, A, b, f, i, N,1))
14 if inf then return NULL
15 Ple, A, b, t,u, N, T) < Plc, A, b, L, i, N, T)
16 | if back > k then break

// 2. LP solving

17 if {ieZ|¢ =u;}| >a|Z|Vv result = solve LP then
18 (x*, inf) < solve P(c, A, b, £, u, N, ¥)
19 if inf then return NULL

// try to round LP solution
20 x* < simple_round(x*)
21 if x* € Zforalli € T then
22 | returnx*
23 else

// 3. LNS approach

24 P, A, b, L, i, N,I) < presolve P(c, A, b, £, u, N', T)
25 if || < BIN| then
26 x* < solve P(c, A, I;, Z, u, ./\7 f) (with working limits)
27 return x*
28 else
29 L return NULL
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stop. The heuristic does not require all integer variables to be fixed at that point. It
solves an LP on the remaining problem and, if feasible, tries to round the LP solution
with the simple rounding heuristic mentioned in Sect. 3.3, see lines 18-22. If enough
integer variables were fixed before, this LP is significantly smaller (and hopefully
easier to solve) than the original LP relaxation. Additionally, not only the LP solving
effort but also the success probability of the rounding heuristic depends on the success
of the fixing step. Therefore, the heuristic scheme demands that a fixing rate of at least
« after the fixing phase is reached (line 17) and stops otherwise. The only exception
is the case that the result value was solve LP. Then, the heuristic continues
without checking the fixing rate.

If rounding the LP solution was not successful, the heuristic employs an LNS
approach to construct a feasible solution to the neighborhood defined by the remaining
unfixed variables. However, since this is typically the most expensive step of the
algorithm, we first apply fast presolving methods to the LNS sub-MIP defined by
the fixings obtained in the previous phase, see line 24. These methods remove fixed
variables and redundant constraints, apply bound tightening and duality fixing, and
perform aggregations of variables, amongst others. While we checked before that we
fixed a sufficient number of integer variables, we now require a reduction of 8 in
the overall problem size in terms of all variables (line 25). Since the processing time
of branch-and-bound nodes in the sub-MIP depends mainly on the LP solving time,
a sufficiently decreased problem size is a good indicator for reasonable LNS times.
Finally, the sub-MIP is solved, see line 26, and the best feasible solution found during
sub-MIP solving is returned (line 27).

In order to limit the effort spent within the heuristics, we use working limits for
the sub-MIP solving. First, the fixing thresholds « and g ensure that the problem
is significantly easier after the fixing phase. Second, we aim at performing a quick
partial solve of the sub-MIP. Therefore, we disable separation in the LNS sub-MIP
solving, use only fast presolving algorithms, and disable all LNS heuristics to avoid
recursion. Additionally, we disable strong branching and use the inference branching
rule of SCIP [2]. If a primal feasible solution was found already, we set an objective
limit such that the solution is improved by at least 1%. Finally, a node limit of 5000 is
used together with a limit of 500 for the number of stalling nodes, i.e., consecutively
processed nodes without finding a new best solution. These limits are chosen based
on previous experiments with LNS heuristics in SCIP.

This general scheme is the same for all three heuristics proposed in this paper.
The difference between them is how and in which order the variables are fixed in
the first phase. This is defined by the global structures which represent interconnec-
tions between variables which can and will be propagated. The novel concept of the
heuristics is that the order in which variables are fixed and the fixing values take into
account the predicted impact a fixing will have on the domain propagation step. By
this, domain propagation is not used as a supplementary subroutine to support the
search, but as a driving mechanism to take decisions within the search: we choose
fixings of which we know that they propagate well. How this is done for each of the
three global structures is explained in the following sections.
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5 The clique-driven fix-and-propagate heuristic

The idea behind the clique-driven fix-and-propagate heuristic is the following: Given
a clique C, at most one variable x;,i € C may be set to 1 in a feasible solution, all
other variables need to be set to 0. Thus, by fixing one of the variables to 1, domain
propagation will fix all other variables in the clique to 0, but will potentially also apply
many more domain changes implied by any of the fixed variables. Consequently, it
seems beneficial to choose large cliques in order to trigger many propagation changes.
On the other hand, by choosing the cheapest variable, i.e., the variable with smallest
objective coefficient as the one to fix to 1, we can aim at constructing solutions with
small objective value.

Algorithm 2: clique_fixing

input : - MIPP(c, A, b, l,u, N,T)
- clique table T

output : - index of binary variable x; which should be fixed next
- should x; be fixed to 0?
- result of the call: continue

1 begin

// 1. select clique
2 C* < argmax{|{x; € C | ¢; <u;}| | CeT}

// best index and corresponding smallest objective
3 k* <~ —1
4 c* <~ o0

// 2. find cheapest variable to fix
5 for j € C* do
6 if Uue; = landcj < c* then
7 L k* < j

* .

8 ¢
9 | return (k*, FALSE, continue)

The fixing algorithm of the clique-driven fix-and-propagate heuristic is illustrated
in Algorithm 2. In a first step, the next clique to process is selected (line 2). This is
done with a greedy strategy: We select a clique with the largest number of unfixed
variables. Note that the selection criterion implies that no variable contained in the
clique is already fixed to 1 since propagation would have fixed all other variables to 0
otherwise. Additionally, we can assume that there always exists a clique with unfixed
variables, since the algorithm is called in line 5 of Algorithm 1 directly after the
while-loop starting in line 3 checks this condition. After choosing a clique, we select
an unfixed variable in it with smallest objective coefficient and return that this variable
should be fixed to 1, see lines 3-9. How successful this fixing strategy is and which
fixing thresholds should be used, see Algorithm 1, is analyzed in the computational
experiments presented in the remainder of this section.
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5.1 Computational analysis

Our computational experiments are based on an implementation of the clique-driven
fix-and-propagate heuristic within the academic MIP solver SCIP 4.0.0 [2,53] with
SOPLEX 3.0.0 [53,64] as underlying LP solver. We use a modified version of the
heuristic as described in this paper, which will replace the old version in the next release
of SCIP. It is implemented as a primal heuristic plugin of SCIP and called once at
the beginning of the root node processing. Note that finding new incumbent solutions
is often most effective at the root node when a new primal bound might directly lead
to global fixings, tighter cutting planes, and better initial branching decisions. This is
the typical application of fix-and-propagate heuristics, since the diversification of the
heuristic search for calls during the subsequent branch-and-bound phase is smaller
than for other heuristics that rely on local LP optima.

In our first experiments, we ran SCIP with a node limit of 1, i.e., we let SCIP stop
after the root node processing. This allows us to compare the heuristic runtime to the
overall root node processing time. Additionally, we set a time limit of 3600s and a
memory limit of 16 GB. All results were obtained on a cluster of 3.2 GHz Intel Xeon
X5672 CPUs with 12 MB cache and 128 GB main memory, running only one job per
cluster node at a time. The experiments were performed on the MMMC test set which
contains all instances from the last three MIPLIB benchmark sets [6,23,47] as well as
the Cor@] test set [25]. We removed duplicates and the instances neos-1058477, neos-
847051, and npmv07 because they caused numerical troubles. Note that the numerical
troubles do not depend on the usage of the heuristic; they can also be observed if it is
disabled. This left us with a total of 496 instances.

For our first experiment, we set the fixing thresholds « and g to 0 in order to always
continue with LP and LNS sub-MIP solving. The backtracking limit of « = 10 stayed
unchanged. This experiment is meant to show the potential of the clique-driven fix-
and-propagate heuristic and at the same time derive good default values for o and
B.

Table 1 gives first aggregated results for this experiment. The rows list information
for different subsets of the instances. All instances (row 1), those stopped before the
LP was solved (row 2), and those where the fix-and-propagate phase was successful
and the heuristic solved the subsequent LP, but no LNS sub-MIP (row 3). The last row
shows statistics for the set of instances where the LNS sub-MIP was solved. For each
subset, we list its size, i.e., the number of instances in this category, the number of

Table 1 Statistics for the clique-driven fix-and-propagate heuristic without fixing thresholds on the MMMC
test set

Subset Size Sols Root time Heur time F&P time LP time LNS time
All 496 189 83.93 2.28 0.11 0.08 2.09
Stopped early 226 - 91.49 0.12 0.12 - -

Only LP solved 215 144 84.71 0.18 0.11 0.06 -

LP + LNS 55 45 49.76 19.39 0.04 0.50 18.85
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instances for which the heuristic found a solution, and the average root node processing
time (including presolving). Additionally, we show the average running time of the
heuristic, as well as the average times for the fix-and-propagate phase, the LP solving,
and the LNS sub-MIP solving. All averages are computed as arithmetic means.

Out of the 496 instances, 102 instances contain no cliques. Another 124 instances
ran into a dead-end, where fixing the best variable in the current clique to O or 1 both
led to infeasibility. These two cases together account for the row “Stopped early”.
On these instances, the clique-driven fix-and-propagate heuristic is fast and consumes
only 0.13% of the root node running time.

For the remaining 270 instances, the heuristic solved the LP. The LP solution could
be rounded to a feasible solution 144 times, and the LP was infeasible for 71 calls.
If neither of the two happened, the LNS sub-MIP was solved. That was the case for
55 instances. If no sub-MIP was needed, the fix-and-propagate phase typically left
few variables unfixed, which results in the LP solving time being about half of the
fix-and-propagate time on average. The expensive case is the one that solves the LNS
sub-MIP. Here, the LP is often harder to solve and needs about 1% of the root time,
while the sub-MIP time dominates the heuristic time and accounts for 38% of the root
node processing time. This is the main reason why the clique-driven fix-and-propagate
heuristic without any fixing limits makes up for 2.7% of the total root time.

The fixing thresholds & and B are meant to reduce the running time of the heuristic
by avoiding to spend too much time in LP and sub-MIP solving. To this end, we
investigate the impact of the fixing rates on both effort and success of the heuristic in
the LP and sub-MIP calls. Figure 2 illustrates the fixing rates for the 270 instances
for which at least an LP was solved. Each bar of the histogram shows the number
of instances for which the integer fixing rate after the fix-and-propagate step was
within a certain range. More specifically, bar k represents all instances with fixing
rate in [S(k — 1)%, 5k%), with an additional bar at 100% for the case that all integer
variables were fixed. Each bar is further divided into two parts: the solid part illustrates
the instances where the clique-driven fix-and-propagate heuristic was successful in
constructing a feasible solution, while the checked part shows instances where no
solution was found by the heuristic. Each of these parts is further divided into two
segments. The dark one represents instances where the heuristic solved the LNS sub-
MIP. For the instances illustrated by the light part, the LP solution could be rounded to
a feasible solution (solid) or the LP was infeasible (checked). The effort spent within
the clique-driven fix-and-propagate heuristic for different fixing rates is illustrated in
Fig. 3. Again, each bar represents all instances with integer fixing rate within a certain
5% range, with one additional bar for instances where all integer variable were fixed.
The height of the bars represents the average time spent in the heuristic compared to
the total root (and preprocessing) time. The heuristic time counts into the root time so
that this share is between 0 and 100

We observe in Fig. 2 that the success rate is high in particular at the two ends of the
histogram. A total of 153 instances have a fixing rate of 90% or higher, the success
rate for these instances is 85%. On the other hand, a solution is found for 75.8% of the
33 instances with a fixing rate of < 20%. Figure 3 indicates that the low fixing rates,
though successful in many cases, should be avoided. They require solving a sub-MIP
of size similar to the original problem for most of the instances. This consumes 51.3%
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Fig.2 Number of instances and solutions found by the clique-driven fix-and-propagate heuristic per integer
fixing rate after the fix-and-propagate step. The solid part of each bar represents the instances for which the
heuristic found a solution, the checked part the instances where it was unsuccessful. The darker (lighter)
parts represent instances where a (no) sub-MIP was solved
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Fig. 3 Average effort of the clique-driven fix-and-propagate heuristic per fixing rate, relative to total root
node processing time

of the aggregated root time on average— time that is better spent just continuing
to solve the original problem. On the other hand, only 1.6% of the aggregated root
node processing time is spent in the heuristic for instances with a fixing rate of 65%
or higher. This threshold slightly increases the number of solutions constructed by
the heuristic to 146 as compared to 130 for a limit of 90%. Many of the additional
solutions are constructed via a sub-MIP; however, no unsuccessful sub-MIP calls can
be observed. On the one hand, this can be seen as a success of the fixing scheme, on
the other hand, the LP solving works very well here as a filter. It identifies all cases
where the subproblem is infeasible so that the effort stays relatively low and accounts
for only 1.6% of the root node processing time.

Figure 4 takes into account the problem size reduction of the presolved sub-MIP as
well, which can be limited by parameter § in Algorithm 1. Since this is only relevant
for instances which solve the LNS sub-MIP, the scatter plot illustrates only those
55 instances. Each instance is represented either by a circle if the heuristic found
a solution, or by a triangle if it was not successful. The x-coordinate indicates the
integer fixing rate after the fix-and-propagate phase, the y-coordinate the problem size
reduction after presolve of the sub-MIP. Note that the latter includes all variables, also
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Fig. 4 Clique-driven fix-and-propagate heuristic time for LP and sub-MIP solving (shade) per fixing rate
of integer variables (x-axis) and total fixing rate after sub-MIP presolving (y-axis). Each circle (triangle)
represents one instance where the heuristic solved a sub-MIP and found a (no) solution

continuous ones, and can therefore be lower than the former which only considers
integer variables. Finally, the shade shows the effort spent on solving the LP and
sub-MIP, again relative to the total root node processing time.

Except for some outliers, the points are roughly located on the diagonal, meaning
that a reduction in the number of integer variables often causes a similar reduction in
the total problem size after presolve, as was to be expected. At the top right where
both fixing rates are high, all sub-MIPs find a solution, and the joint time for LP and
sub-MIP solving is below 5% of the root node processing time for each instance except
for one where it amounts to about 20%. Overall choosing the limit 8 on the fixing rate
after presolve similar to the limit « of integer variables fixed in the fixing phase seems
reasonable.

This leads us to choose « = B = 65% as default in the clique-driven fix-and-
propagate heuristic for our following experiments as well as the version to be released.
Table 2 lists the same information as Table 1, but for the heuristic with the updated
limits. We see that the number of instances that were stopped before the LP solving
increased to 301 since 75 instances did not reach the desired fixing rate. The heuristic
finds 146 solutions, 43 less than in the previous experiment. However, 31 of those
had been constructed with the aid of an expensive sub-MIP. Overall, the number of
sub-MIP calls is reduced from 55 to 14 with a 100% success rate now whenever the
heuristic solves a sub-MIP. Since also the neighborhoods to investigate are smaller due
to the fixing limit, the average LNS time is significantly reduced from more than 19s
to about half a second. This leads to a significantly smaller runtime of the heuristic
compared to the previous experiment. On average over all instances, the heuristic
needs about 0.2% of the root node processing time, which is a good value given a
success rate of 29.4%.
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Table 2 Statistics for the clique-driven fix-and-propagate heuristic with final fixing thresholds ¢« = 8 =
65% on the MMMC test set

Subset Size Sols Root time Heur time F&P time LP time LNS time
All 496 146 81.80 0.13 0.11 0.01 0.01
Stopped early 301 - 76.93 0.09 0.09 - -

Only LP solved 181 132 89.86 0.16 0.13 0.04 -

LP + LNS 14 14 82.21 0.55 0.06 0.03 0.46

6 The variable-bound-driven fix-and-propagate heuristic

In the variable-bound-driven fix-and-propagate heuristic, we implemented different
rules for determining the variable fixings. All of them make use of a topological
sorting of the variable bound graph. Recall that a topological sorting of an acyclic
directed graph is an order of the nodes, such that for every arc (i, j), node i precedes
node j in the order. Since the variable bound graph can contain cycles, we may need
to break them by randomly removing one of the arcs in the cycle. We will use a
topological sorting of this reduced graph to define the order in which variables are
fixed. Note that cycles in the variable bound graph are uncommon and may already
be removed during presolving. In SCIP, this is done by cycle detection in the variable
bound graph [53] and the clique table analysis [40].

Note that each clique C represents a set of vbounds as well: for each pair of variables
x;, xj € C,thetwo vbounds x; < 1—x; andx; < 1—x; areimplied, which correspond
to the arcs (Ib(xj ), ub(x;)) and (Ib(x;), ub(x ;)) in the variable bound graph, respectively.
We take those implied vbounds into account when computing the topological sorting.
Special care has to be taken to avoid unnecessarily high runtimes for the sorting
process. This is done with a simple depth-first search, which has linear effort in the
number of nodes and arcs. However, the number of edges represented by a single
clique is quadratic in the number of variables contained in the clique. Therefore, we
treat them implicitly and use an improvement suggested in a similar context by [8]
so that we need to enter every clique at most twice. Thus, the variable-bound-driven
fix-and-propagate heuristic also uses information stored in the clique table just like
the clique-driven heuristic, but it only uses it to refine the topological sorting of the
variable bound graph. The final fixing scheme summarized in Algorithm 3 is again
a sub-algorithm of Algorithm 1 and called in each iteration of the fix-and-propagate
phase to determine a variable to fix and the corresponding fixing value.

The fixing method starts with an initialization step (lines 2—4). The method fopo-
logical_sort called for this purpose returns an array of nodes in topological order (with
respect to the reduced graph). The method already sorts out disconnected nodes, nodes
corresponding to continuous variables and nodes from which only nodes correspond-
ing to continuous variables can be reached. Additionally, the set ¢/ of unprocessed
nodes is initialized to all nodes in the order.

Then, the first unprocessed node in the topological order is selected. If it corresponds
to an already fixed variable, e.g., by a previous iteration of the fixing phase, it is ignored
and the next variable is selected (lines 9—-11). Recall that each node v of the variable
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Algorithm 3: variable_bound_fixing

input : - MIPP(c, A, b, ¢,u, N,T)
- variable bound graph including clique table G = (V, A)
- strategy € {aggr, cons} - force change or feasibil-
ity?
- obj € {noobj, qual, feas} — how should the objec-
tive function be taken into account?

output : - index of binary variable x; which should be fixed next
- should xj be fixed to its lower bound (otherwise: upper
bound)?
- result of the call: continue or stop fixing
1 begin
// initialization
2 if st call then
// topological sorting; the order does not contain
independent nodes, nodes which correspond to or only
influence continuous variables
3 7 <« topological_sort(G);
4 U<~-Vnm,
5 k <~ 0;
6 while k =0 A || > 0 do

// select first unprocessed node

7 k < min{l <i < |7||7m; €U};
8 U < U\ {mgls
// discard fixed variables
9 if Kidx(ﬂk) = Ujdx(my,) then
10 k < 0;
11 continue ;

// fixing value
12 if strategy = aggr then

13 fixtolower <— not lower(swy);
14 else
15 L fixtolower < lower(ry);
// consider objective function

16 if obj = qual then

// do not fix to worse bound w.r.t. objective
17 if fixtolower # (Cigy(z;) = 0) then
18 | k<0
19 else if obj = feas then

// do not fix to better bound w.r.t. objective
20 if fixtolower # (Cigy(r;) < 0) then
21 | k<0
22 if £ > 0 then
23 | return (idx(rry), fixtolower,continue);
24 else
25 L return (0, FALSE,stop);
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bound graph represents a bound of a variable. Tightening this bound causes some
bound changes on other variables, as defined by all paths in the variable bound graph
starting at node v. Consequently, the earlier a node is considered within the topological
order, the more impact on other bounds we expect when tightening the corresponding
bound.

The first variant by which the heuristic determines fixings aims at obtaining a
large neighborhood by fixing variables such that only few additional restrictions are
caused. This results in a neighborhood with a higher probability both for containing
feasible solutions as well as high-quality solutions. To this end, this variant fixes
the variable to the bound represented by the current node. This means that not the
bound corresponding to the current node is tightened, but the opposite bound, which
comes later in the topological order (if even) and thus causes fewer reductions on other
bounds. The second variant uses an opposing argument: A large neighborhood is more
expensive to process and finding any solutions in there might need more effort than
in a smaller neighborhood with more fixed variables. Therefore, we fix the variable
to the reverse bound, i.e., tighten the bound corresponding to the node in the variable
bound graph. This forces a change of many other bounds of variables, a concept known
to be rather effective in order to drive the solution to feasibility faster, cf. [57]. The
parameter strategy is used to switch between the two variants in Algorithm 3,
lines 12—15. Thereby, a value of aggr corresponds to the more aggressive second
variant, while cons represents the more conservative first variant.

We obtain two variations for each of the previously mentioned variants by taking
into account the objective function. For this, we need the notion of the best bound
of a variable, which is the bound that leads to the best objective contribution of the
variable, i.e., its lower bound if its objective value is non-negative, and its upper bound
otherwise. The first variation applies fixings only if the variable is fixed to its best
bound. Conversely, the second variation fixes a variable only if it is not fixed to its best
bound. The motivation for the first variation is clearly to aim at obtaining high-quality
solutions, it is enabled by setting obj to qual in Algorithm 3, lines 16-21, instead
of the default value noob3j. Variation 2 is based on the observation that typically, the
constraints of the problem push variables away from their best bound, while fixing
them to their worst bound might give a higher chance for a feasible solution in the
end. It is triggered by setting obj to feas. Both variations may keep variables in the
variable bound graph unfixed. If this is the case, the fixing algorithm returns stop as
the result to signal that no further fixings will be performed by the current scheme
(line 25).

Overall, this gives us six fixing schemes for the variable-bound-driven fix-and-
propagate heuristic. We will investigate in the following how well they complement
each other or if any of them is dominated by the others.

6.1 Computational analysis

Our computational experiments are performed in the same environment, with the same
software, and on the same instance set as described in Sect. 5.1. Again, the updated
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version of the variable-bound-driven fix-and-propagate heuristic is called once at the
start of root node processing as motivated in Sect. 5.1.

Similar to the clique-driven fix-and-propagate heuristic, we performed computa-
tional experiments to define reasonable fixing thresholds. The success rate is similar
to the previous experiment; however, the effort spent within a single call of a variant
is higher. Note that this is caused mainly by a higher number of instances that lack
enough relevant structure and we performed the first experiment without applying any
fixing thresholds, as we did for the clique-driven heuristic. Again, fixing thresholds
a = B = 65% prove to be reasonable and will be used in the following. Given these
thresholds, we only call the heuristic on instances where we expect enough fixings
based on the size of the variable bound graph. For more details, we refer to the tech-
nical report [37]. The final fixing thresholds result in 1099 calls of a variant of the
heuristic with a success rate of 67.6% and an average running time of 1.6% of the
root node processing time. Compared to the clique-based heuristic, which has a higher
success rate of 74.9 %, the average effort per call of a variant is almost identical. The
different variants, however, allow to spend more effort to potentially find more or
better solutions.

How well the variants complement each other is investigated in Table 3. For each
of the six variants (defined by the first two columns which present the values of the
two parameters strategy and obj), the table shows its success in finding primal
solutions. We present four different statistics. Column “Sols” lists the total number
of solutions found by the variant, while column “Best sols” displays the number of
instances where the variant found a solution with best objective value among the
variants. This includes cases where multiple variants found solutions with the same
best objective value, while column “Single best sols” only includes instances where
the solution was strictly better than the solutions found by all other variants. Finally,
column “Single sols” summarizes the number of instances for which the respective
variant was the only one able to construct a feasible primal solution.

The three variants (cons, feas), (aggr, noobj), and (aggr, feas), which find
the highest number of solutions also find many best solutions. Variant (aggr, qual)
is ranked worst with respect to the number of solutions found, but taking into account
the objective during fixing proves beneficial for finding better solutions than the other
variants: it is ranked second for the number of strictly best solutions. Overall, (cons,

Table3 Comparison of the six variants of the variable-bound-driven fix-and-propagate heuristic with fixing
thresholds o = B = 65% on the MMMC test set (496 instances)

strategy obj Sols Best sols Single best sols Single sols
cons noobj 113 46 2 1
cons qual 112 54 25 3
cons feas 139 78 35 7
aggr noobj 147 84 17 2
aggr qual 90 59 26 6
aggr feas 142 72 24 12
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Table 4 Statistics for the variable-bound-driven fix-and-propagate heuristic with fixing thresholds o =
B = 65% on the MMMLC test set

Subset Size Sols Root time Heur time F&P time LP time LNS time
All 496 172 79.26 1.74 1.06 0.11 0.57
Stopped early 278 - 75.99 0.04 0.04 - -

Only LP solved 165 122 81.70 3.19 2.97 0.21 -

LP + LNS 53 50 102.42 6.17 0.45 0.39 5.33

noobj) performs worst. Although finding the fourth-highest number of solutions, it
is ranked last for all other criteria. For all but two instances, there is at least one other
variant which finds a solution of equal or better quality. For all other variants, there are
at least 17 instances where the variant finds the single best solution and often several
instances where no other variant finds a solution at all. These results, together with
the relatively small effort for the call of a single variant motivate the default settings
for the heuristic. Variant (cons, noobj3j) is disabled by default, all five other variants
are called sequentially in each call of the variable-bound-driven fix-and-propagate
heuristic.

The performance of the final version of the variable-bound-driven fix-and-propagate
heuristic is presented in Table 4. It lists the same kind of information as Table 1 for
each call of the variable-bound-driven heuristic, which includes the sub-calls of the
five variants enabled by default. Additionally, the heuristic is not run on instances for
which the variable bound graph spans only such a small fraction of the variables that
reaching the fixing rate is very unlikely. More precisely, the heuristic is only called
if the number of variable bounds is at least 0.1« of the total variable number. As a
consequence, the heuristic reaches the LP solving and rounding step for only 44% of
the instances. Note that an instance is counted for having solved an LNS sub-MIP if
at least one of the variants did so on this instance; otherwise, an instance is counted
as having solved the LP if one of the variants did so. The former case happens for 53
instances, for 50 of those, a feasible primal solution can be constructed. Overall, the
variable-bound-driven fix-and-propagate heuristic consumes about 2.2% of the root
node processing time. The effort is negligible for instances where it is stopped before
the LP solving, while for the remaining instances, it increases to 4.51%. This seems
still reasonable given the success rate of 78.9% on this set of instances.

7 The variable-locks-driven fix-and-propagate heuristic

The variable-locks-driven fix-and-propagate heuristic works on a structure which is
present in each MIP: the constraint matrix, and in particular, the variable locks, see
Sect. 3.3. While cliques and the variable bound graph represent only a part of the orig-
inal constraints, but also cover relations implicitly given in the problem and detected
during presolving, the variable locks take into account all given constraints.

The heuristic is motivated by greedy heuristics for set covering problems: Starting
with an all-zero solution, one selects one variable which is contained in the highest
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number of constraints and fixes it to 1. By this, all these set covering constraints are
fulfilled independently of the other variables’ values. In subsequent steps, a variable
is selected which is contained in the highest number of not-yet fulfilled constraints.

How the variable-locks-driven fix-and-propagate heuristic translates this approach
to general MIP is shown in Algorithm 4. In each iteration of the fixing process, a “high-
impact” binary variable is selected, where the impact of a variable is decided based
on the sum of its up- and down-locks, which corresponds to the number of constraints
it is part of, cf. line 5. Then, the given variable is fixed to the bound where it has
the smaller number of locks, see lines 8 to 12. This aims at reaching feasibility fast
and possibly ensuring that some constraints are already fulfilled after a few fixings, no
matter how the values of the remaining variables in the constraint will be chosen within
their updated bounds. If a variable has the same number of up- and down locks, we
use a randomized approach to determine its fixing value. The variable is then fixed to
1 with a probability of 67%, see line 11. We chose this probability based on a previous
experiment where it showed a good performance.

If a constraint is already fulfilled, its locks are disregarded (see lines 2—4), so that
the impact and the fixing direction are always determined with respect to the not-
yet fulfilled constraints only. Therefore, it may happen that all constraints are fulfilled
already and none of the remaining variables has any locks left. In this case, we stop the
fixing procedure and return that the LP should be solved directly in order to determine
optimal values for the remaining variables, cf. lines 6-7.

Algorithm 4: locks_fixing

input : - MIPP(c, A, b, ¢,u, N,T)
output : - index of binary variable x; which should be fixed next;
or -1 if no further fixings should be performed
- should xj be fixed to it O (otherwise: 1)?
- result of the call: continue or directly solve LP

1 begin
// get variable locks
2 fori € Bdo
{iJr <~ |{rell,...,m]:a; >0Amax{A, x|€ < x <u} > b}
G < Wrell,....ml:ay; <0Amax{A, x|€ <x <u}> b}

// select variable with highest sum of up- and down-locks
5 k <~ argmaxi63{§i+ +¢ 7}

// no variable with locks left, stop fixing phase

6 | if¢g =¢ =0then

7 | return (0,FALSE,solve LP)

// fix variable to bound where it has fewer locks
8 if ¢ > ¢, then

9 ‘ return (k, TRUE,continue)

10 else if {,:' =¢; then

1 | return (k TRUE,continue) with probability 33 %
12 return (k, FALSE,continue)
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7.1 Computational analysis

For the computational analysis of the variable-locks-driven fix-and-propagate heuris-
tic, we used the same environment, the same software, and the same instance set as
described in Sect. 5.1. As the previously presented heuristics, the heuristic is called
once at the start of root node processing. Note that we are not using the exact activities
to identify already fulfilled constraints. Computing them from scratch in each iteration
would be too expensive; instead, we are using an updating mechanism which updates
activities whenever the heuristic fixes a variable. The structure of SCIP, however,
makes it hard to update them for propagated domain changes. Therefore, constraints
may be detected to be fulfilled later than they could otherwise be, but the detection
still works reasonably well while being sufficiently fast.

Our experiments concerning the fixing thresholds o and B showed that using a
structure which covers the whole problem typically results in fixing a high number of
variables or failing repeatedly while trying to do so. On 232 of the 286 instances for
which atleast an LP was solved, a fixing rate of 100% is obtained or all constraints could
be satisfied. Only 18 instances have a fixing rate of < 90%. For a detailed analysis,
we refer to the technical report [37]. As default value for the fixing thresholds « and
B, we choose 65%, also for consistency with the other heuristics.

The final statistics for the variable-locks-driven fix-and-propagate heuristic are sum-
marized in Table 5, which again lists the same kind of information as Table 1. The
heuristic finds 240 solutions, which results in a success rate of 48.4% over the complete
test set and 88.2% for the subset of instances where the heuristic is not stopped early.
It only solves a single LNS sub-MIP which is a direct consequence of the effectiveness
of domain propagation and obtaining high fixing rates, making it more probable to
be successful in rounding the LP solution. Overall, the heuristic is reasonably fast,
accounting for about 0.5% of the average root node processing time.

8 Computational results

In the previous sections, we did a local analysis of the newly proposed heuristics. This
means that we evaluated each heuristic individually, focussing on its success in terms
of solutions being found. Additionally, we investigated their runtimes and which part
of the heuristic algorithm consumed how much time. In this section, we investigate

Table 5 Statistics for the variable-locks-driven fix-and-propagate heuristic with final fixing thresholds
o = = 65% on the MMMLC test set

Subset Calls Sols Root time Heur time F&P time LP time LNS time
All 496 240 78.15 0.42 0.22 0.20 0.00
Stopped early 224 - 81.04 0.25 0.25 - -

Only LP solved 271 239 75.95 0.55 0.19 0.37 -

LP + LNS 1 1 24.70 1.88 1.15 0.05 0.69

@ Springer



696 G. Gamrath et al.

Table 6 Pairwise comparison of the structure-driven fix-and-propagate heuristics, showing the number of
instances where one heuristic found a better solution than the other

worse solution worse solution
clique  vbound  locks clique  vbound  locks
5 | clique - 68 94 5 | clique - 43 71
£ | vbound 117 - 127 % | vbound 67 - 86
< | locks 155 130 - < | locks 38 20 -
(a) instances where at least one heuristic (b) instances where both heuristics found a
found a solution solution

the impact of the structure-driven fix-and-propagate heuristics on the overall solving
behavior of SCIP and evaluate how well they can be combined. For this, we use SCIP
version 4.0 with default settings except for the settings enabling the three investigated
heuristics.

Before we come to the overall performance, let us shortly look at how well
the heuristics complement each other. The variable-locks-driven fix-and-propagate
heuristic finds a solution for 48.4% of the instances, while the clique- and the variable-
bound-driven heuristic, which both depend on a more specific structure in the problem,
are only able to generate solutions for 29.4% and 34.5% of the instances, respectively.
Table 6 shows a pairwise comparison of the heuristics with respect to the objective
value of solutions being constructed. On the left side, all instances are regarded where
at least one of the two heuristics found a solution, not counting instances where both
found a solution of equal objective value. Here, the variable-locks-driven heuristic per-
forms best, followed by the variable-bound-driven one. On the right side the evaluation
is restricted to instances where both heuristics found a solution; now the variable-
bound-driven heuristic performs best with the variable-locks-driven heuristic being
ranked last. Summing up, the variable-locks-driven heuristic performs very well with
respect to the number of solutions found but does not take into account the objective
function. The clique- and variable-bound-driven heuristics both consider the objective
function and construct solutions with better objective values but are successful for
fewer instances. Among the two, the latter is more successful, but also considerably
more expensive due to running up to five fixing scheme variants. Based on this anal-
ysis, we decided to configure the heuristics as follows: the clique-driven heuristic is
called first, then the variable-locks-driven one and finally the variable-bound-driven
heuristic. We are running the faster heuristics first because a solution generated by
them provides a cutoff bound that may speed-up the LP and sub-MIP solving of the
variable-bound-driven heuristic.

For the overall performance evaluation, we ran SCIP once without any of the three
structure-driven primal heuristics, once for each of the three heuristics with only
this heuristic enabled and the other two disabled, and once with all three heuristics
enabled. We used a cluster of 2.50 GHz Intel Xeon E5-2670 v2 CPUs with 128 GB main
memory. Each job was run exclusively on one node with a time limit of 7200s and a
memory limit of 100 GB. In order to reduce the impact of performance variability (see
[47,52]), we ran each instance six times with different random seeds (one of them being
the default seed). We removed 27 instance/seed combinations that caused numerical
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Table 7 Solution process statistics for SCIP with default settings and with additional structure-driven
heuristics

Setting Opt Sols First sol (s) Primal int. Time (s)
All instances (2967)

nostructheur 1863 0 4.2 2080.3 431.7
onlyclique 1875 869 4.2 2025.0 429.0
onlyvbound 1877 1023 3.8 1979.1 428.9
onlylocks 1874 1443 4.0 2035.6 430.0
allstructheur 1880 1730 35 1857.2 421.2
Hard instances (874)

nostructheur 791 0 7.3 3011.3 686.9
onlyclique 803 187 7.1 2994.7 667.6
onlyvbound 805 231 6.4 2908.0 661.0
onlylocks 802 405 6.6 2755.4 671.0
allstructheur 808 479 5.7 2596.3 630.2

troubles in one of the experiments, leaving us with 2967 instance/seed combinations.
In a slight abuse of notation, we will refer to each instance/seed combination as an
individual instance in the following. The results of the experiments were evaluated
with the Interactive Performance Evaluation Tools (IPET) [44] and are summarized
in Table 7.

The table is divided into two parts. Each part lists solving process statistics for the
five settings, each represented by one row, on a different (sub-)set of instances. The first
column denotes the setting, followed by columns listing the number of instances solved
to optimality within the time limit of two hours and the number of solutions found by
the structure-driven fix-and-propagate heuristics. Column four lists the time in seconds
until the first solution was found for the instances, averaged by the shifted geometric
mean [2] with a shift of 1s. Column “Primal int.” shows the shifted geometric mean
with a shift of 100 of the primal integrals' for the instances. The last column presents
the shifted geometric mean of the running time in seconds with a shift of 10s.

The first part of the table considers all 2967 instances. On this set, each of the
structure-driven fix-and-propagate heuristics helps to increase the number of instances
solved to optimality within the time limit, while enabling all of them leads to the
best results with 17 more instances being solved than without any of the heuristics.
When running all three heuristics, an initial solution is constructed for 58.3% of the
instances. Each of the heuristics individually reduces the time needed to find a first
feasible solution by 1.7% (clique-driven heuristic) to 10.3% (variable-bound-driven
heuristic). Used together, they even accomplish a reduction of 16.4%. With respect
to the primal integral, each heuristic alone accounts for a reduction by 2.2% to 4.9%,
by enabling all three heuristics, a reduction of 10.7% is obtained. But not only these
measures tailored to primal heuristics are improved: the most important measure, the

L we compute the primal integral [15] of instance i as P (i) = t‘ggx y; (1) dt with tymax= 7200 seconds and
y; (t) the primal gap at time 7.
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solving time to optimality, is also slightly improved by running the heuristics. Even
though about one-third of the instances in the test set do not change their running time
because they time out with all settings, we observe a speed-up of 2.4% with all three
heuristics enabled. More interesting in this regard is the second part of Table 7 which
refers to the subset of “hard” instances. This excludes instances that all settings solved
within 100s. For these instances, the potential for improvement is smaller while the
overhead for running the heuristic has a larger impact. The hard instances, on the other
hand, are the ones where algorithmic improvements are particularly needed and where
we expected a larger impact of the heuristics. We additionally exclude all instances
that none of the settings could solve since those dampen the actual improvement. The
number of additionally solved instances stays unchanged compared to the complete
set, as is implied by the definition of the subset. The success rates of clique- and
variable-bound-driven heuristics are both reduced by about 8% as compared to the
complete test set. The variable-locks-driven fix-and-propagate heuristic is almost as
successful as before, while running all heuristics still finds a solution for 54.8% of the
hard instances. When running all heuristics, the time to the first solution is reduced
by 21.2% and the average primal integral by 13.8%. Due to focusing on the most
interesting instances and omitting unsolvable and very easy ones, we can observe a
solving time reduction by 8.3% now when activating all heuristics.

These are impressive numbers for primal heuristics in mixed-integer programming.
The improvement is not caused by the solutions found by the heuristics alone, however.
There is also a side-effect which impacts performance: the generation of conflict
constraints [1,63]. They capture the essence of infeasible assignments detected during
the fix-and-propagate phase and help to guide the subsequent search. To assess this
effect, we further split the hard instances into the 479 instances where at least one of
the heuristics found a solution on the one side and the remaining 395 on the other side.
For the first set, the positive effects of running all three structure-driven heuristics
are strengthened. The time to the first solution is reduced by 45.9% and the average
primal integral by 25.8%. The average solving time goes down by 12.3% while 11
more instances are solved. On the 395 instances where no solution is constructed,
the time to the first solution is increased by 0.5% and the average primal integral
by 2.3%. This is due to the overhead caused by the heuristics which slows down
the initial root processing of the main MIP solve. In the long run, however, conflict
constraints generated by the seemingly unsuccessful heuristic calls improve the solving
time by 3.1% and even help to solve 6 more instances. An additional computational
experiment in which we disabled the creation of conflict constraints showed a reduction
in the solving time improvement by about one third, while the impact on the average
time to a first solution and average primal integral is considerably smaller (about 5%
and 20%, respectively). This shows that the main task of our newly proposed primal
heuristics, namely generating primal feasible solutions, is still the main reason for the
improvements we observed.
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9 Conclusions and outlook

In this paper, we presented three primal heuristics which are based on global struc-
tures available within MIP solvers. Those structures are the clique table, the variable
bound graph, and the variable locks based on the constraint matrix. The heuristics use
these structures to define a sequence of variable fixings applied in a fix-and-propagate
approach. The LP relaxation of the resulting sub-problem is then solved and rounded.
If the rounded LP solution is not feasible, the sub-problem is solved in an LNS fash-
ion. In our approach, domain propagation is not only used as a tool to avoid infeasible
fixings but rather are the fixing order and fixing values decided based on their effect
on the domain propagation step. The global structures provide the tools to predict this
effect by representing a part of the domain reductions that can be deduced from a
variable fixing.

We performed a detailed analysis of the three heuristics to derive appropriate default
settings. Our final computational experiments indicate that all three heuristics com-
plement each other in the academic MIP solver SCIP. When applying all of them at
the beginning of the branch-and-bound search, they are able to generate a solution
for almost 60% of the instances in standard MIP benchmark sets. This reduces the
shifted geometric means of both the time to the first solution as well as the primal inte-
gral significantly. The structure-driven fix-and-propagate heuristics prove to perform
particularly well on hard instances, where they decrease the solving time by more
than 12% when successful. But even when they do not find a feasible solution, they
are still able to provide a small improvement by 3% on average due to other effects,
most importantly, conflict constraints generated for unsuccessful calls. Therefore, the
updated versions of all three heuristics are part of SCIP since release 5.0 and enabled
by default.
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