
Mathematical Programming Computation (2020) 12:493–528
https://doi.org/10.1007/s12532-020-00175-6

FULL LENGTH PAPER

Parsimonious formulations for low-diameter clusters

Hosseinali Salemi1 · Austin Buchanan1

Received: 11 October 2018 / Accepted: 12 December 2019 / Published online: 30 January 2020
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020

Abstract
In the analysis of networks, one often searches for tightly knit clusters. One property
of a “good” cluster is a small diameter (say, bounded by k), which leads to the concept
of a k-club. In this paper, we propose new path-like and cut-like integer programming
formulations for detecting these low-diameter subgraphs. They simplify, generalize,
and/or dominate several previously existing formulations. Our best-performing for-
mulation uses only node variables (quite unlike previous formulations) and imposes
the diameter-at-most-k constraints via an exponentially large class of cut-like inequali-
ties. A relatively simple implementation of the cut-like formulation easily outperforms
previous approaches, solving dozens of instances of the maximum k-club problem in
a second or two that would take hours by other formulations. Moreover, the cut-like
formulation is more general in the sense that it applies even when distances are not
measured in terms of hops.Whilewe consider only the k-club problem in this paper, the
proposed techniques may also be useful in other applications where compact solutions
are key (e.g., political districting and wildlife reserve design).

Keywords k-club · Low-diameter · Cluster · Integer programming · Hop constraint ·
Distance constraint · Bounded diameter · Length-bounded cut

Mathematics Subject Classification 90B10 · 90C10 · 90C27 · 90C35 · 05C12 ·
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1 Introduction

Cluster detection is a common problem encountered in network analysis, and an oft-
required property of a “good” cluster is that it have a small diameter. Such constraints
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Fig. 1 The gray vertices on the
right form a 2-club. The gray
vertices on the left do not, as
vertex 4 and vertex 6 are
distance 3 from each other in the
induced subgraph
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frequently appear in social network analysis, where a cluster represents a group of
people who can quickly communicate with each other. Intuitively, the shorter the
communication paths, the more tightly knit the cluster is. In the ideal case, all paths
are of length 1, i.e., eachmember of the cluster can communicate directlywith everyone
else in the cluster. This results in the concept of a clique in a graph, which is a subset
S ⊆ V of vertices that induces a subgraph of diameter at most 1, i.e., diam(G[S]) ≤ 1.
Relaxing this definition to “induces a subgraph of diameter at most k” yields a k-club
(Fig. 1).

Definition 1 (k-club, essentially due to Mokken [26]) A subset S ⊆ V of vertices in a
graph G = (V , E) is called a k-club if diam(G[S]) ≤ k.

This notion of a k-club was originally introduced in sociology [3,26], and has
found applications in the analysis of biological networks [9], as well as in text mining,
terrorist networks, and network security [35]. Essentially the same type of diameter
constraint appears in political districting andwildlife reserve design applicationswhere
compactness is key.

Effectively enforcing these diameter-at-most-k (i.e., k-club) constraints in an integer
program (IP) has proven difficult for researchers. Notable techniques include intro-
ducing a binary variable for (the interior of) each path of length at most k [12,43]
and linearizing multilinear 0-1 formulations [38,39]. A naïve implementation of the
path-based formulation quickly becomes impractical as the value of k increases, since
its number of variables is Θ(nk−1), where n is the number of nodes, under hop-based
distances [43]—or size Θ(nk+1) if the path variables include the path’s endpoints
[12]. Any practical approach based on it would require a complicated branch-and-
price implementation even for moderate values of k. The linearized multilinear 0-1
formulations of Veremyev et al. [38,39] useΘ(kn2) variables and typically solve real-
life 200-node instances of the maximum k-club problem with k = 4 in 10 min, but
routinely fail to solve 300-node instances with k = 5 in under one hour [27]. One lim-
itation of these formulations is that they cannot be used to solve very large instances
(with thousands of nodes), as the variables will number in the millions. Also, they
only apply when distances are measured in terms of hops (cf. the pseudopolynomial
formulation of Veremyev et al. [39]).

In this paper, we propose new path-like and cut-like formulations that generalize
or improve upon several previously existing formulations for k-clubs. We include
“-like” in their names to emphasize that they are not based on the usual notions of
paths and cuts. Instead, they are based on length-bounded connectors and length-
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Fig. 2 Under hop-based
distances, the vertex subset
{2, 4} is a length-3
1, 6-connector, and the vertex
subset {4} is a length-3
1, 6-separator 1 2
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bounded separators, which are defined below. Examples to illustrate the definitions
are given in Fig. 2.

Definition 2 (Length-k a, b-connector) A subset C ⊆ V \{a, b} of vertices is
called a length-k a, b-connector in an edge-weighted graph G = (V , E) if
distG[C∪{a,b}](a, b) ≤ k.

Definition 3 (Length-k a, b-separator) A subset S ⊆ V \{a, b} of vertices is called a
length-k a, b-separator in an edge-weighted graph G = (V , E) if distG−S(a, b) > k.

The path-like formulation that we propose generalizes the folklore k = 2 com-
mon neighbor formulation [see constraints (19)], simplifies and dominates the chain
formulations of Bourjolly et al. [12] and Wotzlaw [43], and generalizes the k = 3
neighborhood F_N formulation of Almeida and Carvalho [4]. We observe that, when
distances are hop-based and m refers to the number of edges, the path-like formula-
tion has O(m(k−1)/2) variables when k is an odd constant and O(nm(k−2)/2) variables
when k is an even constant. In particular, the formulation has size O(n + m) when
k = 3 and size O(nm)when k = 4. This makes the path-like formulation a reasonable
option when k ≤ 4, distances are hop-based, and the graph is sparse.

However, we prefer the cut-like formulation for a number of reasons. First, it uses
just n binary variables, regardless of the edges’ weights or the value of k. This allows
us to apply it to large instances and to instances having non-unit edge lengths. Second,
it is conceptually simple, being defined by a single class of constraints:

(length-k a, b-separator inequality) xa + xb ≤ 1 + x(S). (1)

Here, xi is a binary variable representing the decision to include vertex i in the k-
club, and x(S) is shorthand for

∑
i∈S xi . These inequalities are written for every

pair {a, b} of nonadjacent vertices and every length-k a, b-separator S ⊆ V \{a, b}.
Third, our implementation of the cut-like formulation handily outperforms all previous
approaches for the maximum k-club problem, solving dozens of instances in seconds
that take hours by other formulations. This is despite the fact that this formulation can
have exponentially many inequalities (for which the separation problem is generally
hard). Other notable properties of the cut-like formulation include: it is stronger than
the path-like formulation; it generalizes the folklore k = 2 common neighbor for-
mulation; and it generalizes the k = 3 node cut set formulation F_S of Almeida and
Carvalho [4].

Though we focus on the maximum k-club problem in this paper, our broader intent
is to illustrate the potential of using “cut-like” formulations for diameter-constrained
problems, e.g., arising in political districting or wildlife reserve design. The k-club
problem serves as a well-studied, stylized problem on which to test the approach.
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1.1 Preliminaries

Consider a simple, edge-weighted graph G = (V , E) with vertex set V and edge set
E ⊆ (V

2

)
, where

(V
2

) := {{u, v} | u, v ∈ V , u �= v}. We often let n := |V | and
m := |E |. The weight we of each edge e ∈ E is assumed to be nonnegative. We
suppose, without loss of generality, that each edge weightwe is at most k. (Otherwise,
the edge cannot belong to a path of length at most k, thus making it irrelevant for
purposes of k-clubs and safe to delete.) The length of a path is the sum of its edges’
weights. The distance from node a to node b in graph G is the length of a shortest
path from a to b and is denoted distG(a, b). In some cases, distances are “hop-based,”
meaning that each edge has weight one. The diameter of G is the maximum of these
pairwise distances and is denoted

diam(G) := max

{

distG(a, b)

∣
∣
∣
∣ {a, b} ∈

(
V

2

)}

.

The subgraph of G induced by the vertex subset S ⊆ V is denoted by

G[S] :=
(

S, E ∩
(

S

2

))

.

For the vertex subset S ⊆ V , let G − S := G[V \S] represent the subgraph obtained
by removing the vertices of S (and any incident edges). Similarly, for the edge subset
F ⊆ E , let G−F := (V , E\F). The neighborhood of a vertex v in graph G = (V , E)

is denoted NG(v) := {w ∈ V | {v,w} ∈ E}.
Mokken [26] defined a k-club as an inclusionwisemaximal subset of vertices whose

induced subgraph has diameter atmost k (in terms of hops). Nowadays, themaximality
condition is usually dropped from the definition. Still, much of the literature on k-clubs
is devoted to finding large k-clubs in graphs, particularly those that are maximum. The
maximum k-club problem is known to be NP-hard [12], even in graphs of diameter
k + 1 [9]. Further, the problem of testing whether a given k-club is inclusionwise
maximal is coNP-complete for every k ≥ 2 [22]. For every k ≥ 2, the maximum
k-club problem is approximable within a factor of 	n1/2
 and essentially no better [6].
For more, see the survey of Shahinpour and Butenko [35].

To verify that a subset S ⊆ V of vertices is a k-club, one can create the subgraph
G[S] induced by S and then perform a single-source shortest paths computation from
each node v to ensure that all other nodes are no farther than k away. When distances
are hop-based this takes time O(|S|m) = O(nm) by BFS. When each edge length
is a positive integer, this can be done in time O(|S|m + |S|2 log log |S|) = O(nm +
n2 log log n) by Thorup [36]. Under the strong exponential time hypothesis (SETH)
of Impagliazzo et al. [18,19], this is essentially best-possible, even in the simplest
nontrivial case of 2-clubs, seeTheorem1.SETH is anunproven complexity assumption
that is stronger than P �=NP, and, while not everyone believes that it is true, disproving
it would be a breakthrough and imply faster algorithms for many problems.
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Theorem 1 (Roditty and Vassilevska Williams [31]) If SETH holds, then for every
ε > 0 there is no time O(m2−ε) algorithm for checking whether a connected graph
G has diam(G) ≤ 2.

1.2 Related work

Previously, we mentioned the integer programming formulations for k-clubs given by
Bourjolly et al. [12] (cf. Wotzlaw [43]) and Veremyev et al. [38,39]. Another recent
approach by Moradi and Balasundaram [27], cf. Lu et al. [21], is to:

– initialize a formulation with inequalities of the form xa + xb ≤ 1, where
distG(a, b) > k;

– as necessary, cut off infeasible 0-1 vectors x∗ using the constraint:

∑

i∈V : x∗
i =0

xi +
∑

i∈V : x∗
i =1

(1 − xi ) ≥ 1. (2)

This is similar in spirit to what we propose, except that our length-k a, b-separator
inequalities (1) exploit the problem’s structure and are naturally stronger than the
canonical hypercube cuts (2) which only cut off x∗.

Almeida and Carvalho [4] compare three different formulations for the 3-club prob-
lem: (i) the chain formulation ofBourjolly et al. [12]which uses a variable for each path
of length at most 3; (ii) a so-called neighborhood formulation (F_N) which imposes
linearized versions of the following constraints for every pair {a, b} of nonadjacent
nodes:

(Constraints of F_N) xa + xb ≤ 1 +
∑

c∈N (a)∩N (b)

xc +
∑

{i, j}∈Eab

xi x j

where Eab is the subset of edges {i, j} ∈ E for which i ∈ N (a)\N (b) and
j ∈ N (b)\N (a); and (iii) a so-called node cut set formulation (F_S) based on the
exponential class of constraints:

(Constraints of F_S) xa + xb ≤ 1 +
∑

c∈N (a)∩N (b)

xc +
∑

i∈Sab

xi

where Sab ⊆ V is a vertex cover of the graph induced by the edge set Eab. We will see
that the formulations F_N and F_S are the special cases of our path-like and cut-like
formulations, respectively, when k = 3.

In a number of applications, one requires the selected vertices to induce a con-
nected subgraph, but with no specific bound on its diameter. This can be formulated
using the a, b-separator inequalities xa + xb ≤ 1 + x(S), where S ⊆ V \{a, b} is an
a, b-separator, i.e., there is no path from a to b in G − S. These inequalities have been
studied in detail by Wang et al. [42]. Approaches based on a, b-separator inequali-
ties have outperformed flow-based formulations for imposing induced connectivity
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[13,14,16], and thus it is perhaps not surprising that our distance-constrained gener-
alization performs well. The separation problem for the a, b-separator inequalities is
polynomial-time reducible to max flow (see, e.g., Fischetti et al. [16]), implying that
one can optimize over the corresponding LP relaxation in polynomial time [17]. We
will see that the separation problem for our cut-like formulation is similarly reducible
to max flow when k ∈ {2, 3, 4} but that separation is hard when k ≥ 5.

1.3 Our contributions

In Sect. 2, we introduce the path-like formulation. It generalizes the folklore k = 2
common neighbor formulation, simplifies and dominates the chain formulations of
Bourjolly et al. [12] and Wotzlaw [43], and generalizes the k = 3 neighborhood F_N
formulation of Almeida and Carvalho [4]. We also detail the formulation for the k = 4
case.

In Sect. 3, we introduce the cut-like formulation, which is the first nontrivial formu-
lation for k-club that uses n variables, and prove its correctness—even when distances
are not hop-based. It generalizes the folklore k = 2 common neighbor formulation and
the k = 3 node cut set formulation F_S of Almeida and Carvalho [4]. We provide the
exact conditions under which the formulation’s constraints induce facets, and show
that the cut-like formulation is stronger than the path-like formulation for every k ≥ 3,
generalizing results of Almeida andCarvalho [4] who showed that F_S is stronger than
F_N (i.e., the k = 3 case).

In Sect. 3.3,we examine some complexity issues relating to the cut-like formulation.
Namely,weobserve that the associated separationproblemcanbe solved in polynomial
time when k ∈ {2, 3, 4} (if distances are measured in terms of hops) and prove NP-
hardness for every k ≥ 5. Note that Almeida and Carvalho [4] never addressed the
complexity of separation for their F_S formulation (i.e., the k = 3 case of our cut-
like formulation) and resorted to heuristic separation in their implementation.1 The
polynomiality of separation for the case k = 4 is intimately linked with observations
of Lovász et al. [20] on length-bounded cuts. We also remark that these flow-based
separation routines immediately lead to polynomial-size (but impractical) extended
formulations when k ∈ {3, 4}.

In Sect. 4, we perform computational experiments. They demonstrate the superi-
ority of the cut-like formulation over all other formulations, including the path-like
formulation and the compact formulations of Veremyev et al. [38,39]. In many cases,
the differences in running time are dramatic, with the cut-like formulation taking a sec-
ond or two and the other approaches taking hours. This happens on both real-life and
synthetic testbeds that have been considered in the previous literature on themaximum
k-club problem. Taking inspiration fromMoradi and Balasundaram [27], we also pro-
pose a decomposition procedure to handle the exorbitant number of conflict constraints
generated for some of the larger instances. Our code is publicly available [32].

Finally, we conclude in Sect. 5.

1 In later work, Almeida and Carvalho [5] show that their node cut set formulation F_S admits a size
O(n4) extended formulation which they call F_EC, but the separation problem for F_S is never explicitly
discussed.
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2 The path-like formulation

In this section, we introduce the path-like formulation, which improves upon the
chain formulation of Bourjolly et al. [12] (cf. Wotzlaw [43]) and generalizes the k = 3
neighborhood formulation F_N of Almeida and Carvalho [4]. For completeness, we
briefly review the previous formulations.
Chain formulation The chain formulation of Bourjolly et al. [12] has a binary variable
yP for each chain (or path) of length at most k.

max
∑

i∈V

xi (3)

xa + xb ≤ 1 +
∑

P∈Pk
ab

yP ∀{a, b} ∈
(

V

2

)

\E (4)

yP ≤ xi ∀i ∈ V (P), ∀P (5)

xi ∈ {0, 1} ∀i ∈ V (6)

yP ∈ {0, 1} ∀P. (7)

Here, Pk
ab is the collection of paths of length at most k between nodes a and b, and ∀P

is shorthand for all paths of length at most k. Constraints (4) ensure that, for every pair
of nonadjacent vertices a and b in the chosen k-club, there is at least one path between
them of length at most k. Constraints (5) ensure that these paths can be crossed only
when all of their nodes are selected in the k-club.

Observe that a path consisting of k edges crosses k − 1 interior nodes and two
endpoints for a total of k + 1 nodes. Thus, the number of path variables are of the
order O(nk+1)when distances are hop-based. And,whenG is complete, the number of
paths is indeedΩ(nk+1). However, as observed byWotzlaw [43], the path variables can
be defined with respect to the interior nodes only, giving size O(nk−1). For example,
if G is the path graph 1-2-3-4 with an additional leaf node 5 attached to node 3 and
k = 3, then the path 2-3 can connect the a, b-pairs {1, 4} as well as {1, 5}; there is no
need to define two variables for the paths 1-2-3-4 and 1-2-3-5.

It is unclear whether Bourjolly et al. intended for these path variables to include
their endpoints, but later papers claim that the chain formulation has size O(nk+1)

(see Veremyev and Boginski [38]; Almeida and Carvalho [4]), and to our knowledge
Wotzlawwas the first to explicitly state a size bound of O(nk−1), albeit in aMAX-SAT
formulation.

Path-like formulation In the “path-like” formulation, we actually define variables for
length-bounded connectors (and not for paths). We will see that this yields several
benefits. The formulation is as follows, where yC is a binary variable denoting whether
to choose the connector C ⊂ V , and Ck

ab is the collection of all minimal length-k a, b-
connectors.
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max
∑

i∈V

xi (8)

xa + xb ≤ 1 +
∑

C∈Ck
ab

yC ∀{a, b} ∈
(

V

2

)

\E (9)

yC ≤ xi ∀i ∈ C, ∀C (10)

xi ∈ {0, 1} ∀i ∈ V (11)

yC ∈ {0, 1} ∀C . (12)

Here, ∀C is shorthand for ∀C ∈ ⋃
Ck

ab where the union is over {a, b} ∈ (V
2

)\E . We
note that this formulation applies when distances are edge-weighted, although it seems
that little can be said about its size in this case.

The advantages of defining variables for length-bounded connectors (instead of for
paths) include:

– there is no confusion regarding whether the “endpoints” are part of the variable’s
definition;

– the order in which the vertices are visited in a path is stricken from the variable
definition, resulting in fewer variables;

– it allows us to define variables only for minimal connectors, which again reduces
the formulation’s size.

In fact, the restriction to minimal connectors is the key advantage of the k = 3 neigh-
borhood formulation F_N of Almeida and Carvalho [4] over the chain formulation
(and over its no-endpoints variant).

Proposition 1 Suppose distances are hop-based, G is connected, and k ≥ 2 is a
constant. Then, the number of variables in the path-like formulation is:

– O(m(k−1)/2) when k is odd, and
– O(nm(k−2)/2) when k is even.

And, there are graphs requiring Ω(nk−1) variables.

Proof Since distances are hop-based, every minimal length-k a, b-connector C ∈ Ck
ab

induces an a, b-path graph, say a = v0-v1-v2-· · · -vq = b, where q ≤ k. For such a
connector C , define f (C) as follows

f (C) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
∅,

{
{v1, v2}, . . . , {vq−2, vq−1}

})
if |C | ≥ 2 is even (q odd)

(
v1,

{
{v2, v3}, . . . , {vq−2, vq−1}

})
if |C | ≥ 1 is odd (q even) and v1 < vq−1

(
vq−1,

{
{v1, v2}, . . . , {vq−3, vq−2}

})
if |C | ≥ 1 is odd (q even) and v1 > vq−1.

Observe that the function f maps a connector C to an ordered pair (vC , EC ) where
vC ∈ V ∪ {∅} and EC ⊆ E . See that, when |C | is even, f maps C to (q − 1)/2 edges;
when |C | is odd, f maps C to a vertex and (q −2)/2 edges. Define C := ⋃

Ck
ab where
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Fig. 3 Examples of the collectionCk
ab ofminimal length-k a, b-connectors. On the left,C3

ab = {{1}, {2, 3}}.
On the right, C7

ab = {{1, 3}}. The edge weights are given next to the edges

the union is over {a, b} ∈ (V
2

)\E and F := { f (C) | C ∈ C}. By assumption that G is
connected and k is a constant, nk = O(m). Then,

|C| = |F | ≤
k∑

q=2
(q even)

n

( |E |
(q − 2)/2

)

+
k∑

q=3
(q odd)

( |E |
(q − 1)/2

)

.

So, when k ≥ 3 is odd,

|C| ≤ k − 1

2
n

( |E |
(k − 3)/2

)

+ k − 1

2

( |E |
(k − 1)/2

)

= O

(

k

( |E |
(k − 1)/2

))

= O(m(k−1)/2),

and when k ≥ 2 is even,

|C| ≤ k

2
n

( |E |
(k − 2)/2

)

+ k − 2

2

( |E |
(k − 2)/2

)

= O

(

nk

( |E |
(k − 2)/2

))

= O(nm(k−2)/2).

Since the number of variables in the path-like formulation is n +|C|, the first claim
holds.

The following construction shows the second claim. Consider a graph with the
vertex set V = {a} ∪ V1 ∪ V2 ∪ · · · ∪ Vk−1 ∪ {b}, where each Vi has n−2

k−1 vertices.
Connect a to all vertices of V1, each vertex of V1 to all vertices of V2, . . . , and each
vertex of Vk−1 to b. Picking one vertex vi from each Vi gives a minimal length-k a, b-
connector {v1, v2, . . . , vk−1}. Thus, the number of minimal length-k a, b-connectors
is at least ( n−2

k−1 )k−1, which is Ω(nk−1) when k is fixed. ��

Remark 1 Figure 3 shows that if distances are not hop-based, a minimal length-k
a, b-connector might not induce a path graph.

To better illustrate the reason for using connectors that are minimal, consider the
graphs obtained by removing an edge e = {a, b} from a complete graph, i.e., Kn − e,
and suppose distances are hop-based. For these graphs, the formulation of Wotzlaw
[43] would use a variable for each of the

(n−2
k−1

)
(k −1)! paths of length k that connect a

and b (not to mention the variables for the shorter paths). If the variables were defined
for length-k a, b-connectors (instead of for paths), this number would reduce to

(n−2
k−1

)
.
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Enforcing that the connectors be minimal further reduces the number of auxiliary
variables to n − 2. Thus, these graphs Kn − e provide examples where the path-like
formulation is much smaller than the formulation of Wotzlaw [43].

2.1 The hop-based case k = 3

In this section, we detail the path-like formulation for the hop-based case k = 3, show-
ing that it is essentially the neighborhood formulation F_N of Almeida and Carvalho
[4]. A similar analysis shows that it generalizes the folklore k = 2 common neighbor
formulation.

To flesh out the formulation, we only need to identify the minimal length-3 a, b-
connectors C3

ab. So, suppose that vertices a and b are nonadjacent. Observe that if
v ∈ N (a) ∩ N (b), then {v} is a minimal length-3 a, b-connector. And, if {u, v} ∈ E
and u ∈ N (a)\N (b) and v ∈ N (b)\N (a), then {u, v} is a minimal length-3 a, b-
connector. Finally, there are no others. Thus, letting

Eab := {{u, v} ∈ E | u ∈ N (a)\N (b), v ∈ N (b)\N (a)},
we can write the constraints (9) as

xa + xb ≤ 1 +
∑

v∈N (a)∩N (b)

y{v} +
∑

e∈Eab

ye. (13)

We can add constraints of the following form to the path-like formulation without
changing the feasible region in the space of x variables.

∑

i∈C

xi ≤ (|C | − 1) + yC . (14)

Observing that constraints (14) and (10)will force xv = y{v} for each v ∈ N (a)∩N (b),
the path-like formulation with constraints (14) reduces to2:

max
∑

i∈V

xi

xa + xb ≤ 1 +
∑

v∈N (a)∩N (b)

xv +
∑

e∈Eab

ye ∀{a, b} ∈
(

V

2

)

\E

xu + xv ≤ 1 + ye ∀e = {u, v} ∈ E

ye ≤ xv ∀v ∈ e, ∀e ∈ E

xi ∈ {0, 1} ∀i ∈ V

ye ∈ {0, 1} ∀e ∈ E .

This is the neighborhood formulation F_N of Almeida and Carvalho [4].

2 One possible caveat is that not all edges will be minimal length-3 a, b-connectors, meaning that the
path-like formulation may in fact have fewer variables and constraints than F_N.
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Fig. 4 Vertices (and edges)
within minimal length-4
a, b-connectors

a bV11

V12 V21

V13 V22 V31

2.2 The hop-based case k = 4

Here we detail the hop-based case k = 4 of the path-like formulation. For every pair
{a, b} of nonadjacent vertices, we partition the vertices of the graph G = (V , E) into
sets Vi j = Vi j (a, b) as follows.

Vi j (a, b) := {v ∈ V | distG(a, v) = i, distG(v, b) = j}. (15)

Observe that if some vertex v belongs to a set Vi j with i + j > 4, then it cannot belong
to a minimal length-4 a, b-connector. Thus, every minimal length-4 a, b-connector is
a subset of V11 ∪ V12 ∪ V21 ∪ V13 ∪ V22 ∪ V31, as depicted in Fig. 4.

Every minimal length-4 a, b-connector C ∈ C4
ab is one of the following six types.

1. {i} where i ∈ V11;
2. {p, q} where p ∈ V12, q ∈ V21, pq ∈ E ;
3. {p, v, q} where p ∈ V12, v ∈ V22, q ∈ V21, pv ∈ E , vq ∈ E , pq /∈ E ;
4. {p, v, w} where p ∈ V12, v ∈ V22, w ∈ V31, pv ∈ E , vw ∈ E ;
5. {u, v, q} where u ∈ V13, v ∈ V22, q ∈ V21, uv ∈ E , vq ∈ E ;
6. {u, v, w} where u ∈ V13, v ∈ V22, w ∈ V31, uv ∈ E , vw ∈ E .

Moreover, for a particular {a, b} pair, all minimal length-4 a, b-connectors can be
enumerated in time O(nm) using linear space. The interested reader can consult our
C++ implementation for the details [32].

Remark 2 By Proposition 1, the path-like formulation for 4-club has O(mn) variables
and constraints when distances are hop-based.

3 The cut-like formulation

In this section, we introduce the cut-like formulation for k-club, generalizing the
k = 2 common neighbor formulation and the k = 3 node cut set formulation F_S of
Almeida and Carvalho [4]. It has only n variables, and its constraints are based on
length-k a, b-separators.

Recall that a subset S ⊆ V \{a, b} of vertices in a graph G = (V , E) is called a
length-k a, b-separator if the distance from node a to node b in the graph G − S is
greater than k. In other words, each a, b-path of length ≤ k crosses at least one vertex
of S. See Fig. 2 for an example.
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Cut-like formulation As before, there is a binary variable xi representing the decision
to include vertex i ∈ V in the k-club.

max
∑

i∈V

xi (16)

xa + xb ≤ 1 + x(S) ∀(a, b, S) (17)

xi ∈ {0, 1} ∀i ∈ V . (18)

Here, ∀(a, b, S) is shorthand for all nonadjacent vertices a and b and all length-k a, b-
separators S ⊆ V \{a, b}. Naturally, it is sufficient to consider only minimal length-k
a, b-separators.

In the hop-based case k = 2, observe that the only minimal length-k a, b-separator
is N (a) ∩ N (b) so constraints (17) reduce to the folklore k = 2 constraints:

xa + xb ≤ 1 + x(N (a) ∩ N (b)) ∀{a, b} ∈
(

V

2

)

\E . (19)

Theorem 2 The cut-like formulation is correct, even when distances are edge-
weighted.

Proof We show that the vertex subset K ⊆ V is a k-club if and only if its characteristic
vector x K ∈ {0, 1}n satisfies all constraints (17).

(⇒) By the contrapositive. Let K ⊆ V and suppose x K
a + x K

b > 1+ ∑
i∈S x K

i for
some length-k a, b-separator S ⊆ V \{a, b}. This implies a, b ∈ K and |S ∩ K | = 0.
Since S is a length-k a, b-separator, distG−S(a, b) > k. Since G[K ] is a subgraph
of G − S, distG[K ](a, b) ≥ distG−S(a, b). Thus, diam(G[K ]) ≥ distG[K ](a, b) ≥
distG−S(a, b) > k, so K is not a k-club.

(⇐) By the contrapositive. Suppose that K ⊆ V is not a k-club. That is, there
exist vertices a, b ∈ K such that distG[K ](a, b) > k. Then, S := V \K is a length-k
a, b-separator in G. So, x K violates the length-k a, b-separator inequality (17) since
x K

a + x K
b = 2 > 1 + 0 = 1 + ∑

i∈S x K
i . ��

3.1 Facet characterization

In this section, we provide the exact conditions underwhich the length-k a, b-separator
inequality (17) induces a facet of the k-club polytope CLUBk(G) = CLUBk(G, w) of
graphG. To our knowledge, this is the first known nontrivial facet of the edge-weighted
k-club polytope, besides the folklore inequalities mentioned in Proposition 2.

Proposition 2 (Folklore, k = 2 by Balasundaram et al. [9]) If S ⊆ V is a subset
of vertices whose pairwise distances are greater than k, then x(S) ≤ 1 is valid for
CLUBk(G). Moreover, if no proper superset of S satisfies this property, then x(S) ≤ 1
induces a facet.

We will take as given that CLUBk(G) is full-dimensional, which is well-known
(say, because it contains the zero vector and the unit vectors ei ). For more on k-club
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polyhedra, consult Balasundaram et al. [9]; Balasundaram [8]; Mahdavi Pajouh et al.
[23].

Lemma 1 (A way to lift) Let S ⊆ V \{a, b} be a length-k a, b-separator in graph
G = (V , E). If vertex d ∈ V \S satisfies properties 1 and 2 below, then xa + xb +
xd − x(S) ≤ 1 is valid for CLUBk(G).

1. distG−S(a, d) > k and distG−S(b, d) > k;
2. for every s ∈ S, at least one of the following holds:

(a) distGs (d, s) + distGs (s, a) > k;
(b) distGs (d, s) + distGs (s, b) > k;

where Gs := G − (S\{s}).
Proof By the contrapositive. Suppose there is a k-club K ⊆ V with x K

a + x K
b + x K

d −
x K (S) ≥ 2, where x K is the characteristic vector of K .

In the first case, suppose x K (S) = 0. This implies that at least 2 vertices of {a, b, d}
belong to K , and a and b cannot both belong to K since S is a length-k a, b-separator.
So, without loss, suppose that a, d ∈ K and b /∈ K . Then,

distG−S(a, d) ≤ distG[K ](a, d) ≤ k.

The first inequality holds because G − S is a supergraph of G[K ], and the second
inequality holds because K is a k-club that contains a and d. This shows that property
1 fails.

In the other case, x K (S) ≥ 1. Pick s ∈ K ∩ S arbitrarily. Since x K
a + x K

b + x K
d −

x K (S) ≥ 2, we have a, b, d ∈ K and so K ∩ S = {s}. Now, if distG−S(a, d) ≤ k or
distG−S(b, d) ≤ k then property 1 fails, in which case we are done. So, suppose that
distG−S(a, d) > k and distG−S(b, d) > k. By straightforward properties of distances,
the following inequalities hold.

distGs (d, a) ≤ distGs (d, s) + distGs (s, a) (20)

distGs (d, b) ≤ distGs (d, s) + distGs (s, b). (21)

We claim that these inequalities (20) and (21) hold at equality. Suppose not. Then at
least one of them holds strictly; without loss, let it be the former, i.e., distGs (d, a) <

distGs (d, s) + distGs (s, a). This implies distGs (d, a) = distG−S(d, a), in which case
we arrive at the contradiction

k < distG−S(d, a) = distGs (d, a) ≤ distG[K ](d, a) ≤ k.

Here, the inequality near the middle holds because Gs is a supergraph of G[K ], and
the last inequality holds because K is a k-club that contains a and d. This shows that
inequalities (20) and (21) hold at equality, and so the following holds.

distGs (d, s) + distGs (s, a) = distGs (d, a) ≤ distG[K ](d, a) ≤ k
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distGs (d, s) + distGs (s, b) = distGs (d, b) ≤ distG[K ](d, b) ≤ k.

This shows that property 2 fails. ��
Theorem 3 The length-k a, b-separator inequality xa + xb ≤ 1+ x(S) induces a facet
of the k-club polytope CLUBk(G) of G if and only if:

1. S is a minimal length-k a, b-separator; and
2. no vertex d ∈ V \S satisfies properties 1 and 2 of Lemma 1.

Proof (⇒) Suppose that xa + xb − x(S) ≤ 1 is facet-defining. If S is not minimal
(i.e., there is a S′ � S that is also a length-k a, b-separator), then the valid inequalities
xa + xb − x(S′) ≤ 1 and−x(S\S′) ≤ 0 imply xa + xb − x(S) ≤ 1, so it cannot induce
a facet. So, S is minimal. Similarly, if some vertex d satisfies properties 1 and 2 of
Lemma 1, we can write the valid inequalities xa + xb + xd − x(S) ≤ 1 and −xd ≤ 0
which imply xa + xb − x(S) ≤ 1, so it cannot induce a facet.

(⇐) Suppose that S is a minimal length-k a, b-separator and that no vertex d ∈
V \S satisfies properties 1 and 2 of Lemma 1. We already know that the inequality
xa + xb − x(S) ≤ 1 is valid. So, to show that it is facet-defining, we will give n
different k-clubs whose characteristic vectors are affinely independent and belong to
the face where the inequality xa + xb − x(S) ≤ 1 holds at equality. To do so, we will
need some notations. Define

D := {v ∈ V \S | distG−S(a, v) > k, distG−S(b, v) > k}.

We refer to paths that start at vertex v ∈ V and end at some vertex of U ⊆ V as
v-U paths. A shortest v-U path has the shortest length among all v-U paths. Finally,
denote by length(P), hops(P), and V (P) as the (edge-weighted) length, number of
edges, and the vertex set of path P , respectively.

We construct n different k-clubs as follows. See Fig. 5 for an illustration.

– For every vertex v ∈ V \(S ∪ D), do the following. Let R = {a, b}. Among the
shortestv-R paths in graphG−S, pick a path Pv having the fewest number of edges.
Then, order the vertices of V \(S∪D) as (v1, v2, . . . , vq), where q := n−|S|−|D|,
so that:

(i) length(Pv1) ≤ length(Pv2) ≤ · · · ≤ length(Pvq ), and
(ii) if i < j and length(Pvi ) = length(Pv j ), then hops(Pvi ) ≤ hops(Pv j ).

This can be obtained by sorting the vertices v ∈ V \(S ∪ D) by the lengths of
their paths Pv , breaking any ties by hops(Pv). This gives the k-club denoted by
Ki := V (Pvi ).

– For every vertex s ∈ S, do the following. Consider a shortest a-b path Ps in graph
Gs := G − (S\{s}). Such a path exists and has length at most k by minimality of
S. This gives the k-club V (Ps).

– For every vertex d ∈ D, do the following. Let Sd ⊆ S be the set of vertices
violating property 2 of Lemma 1. Among the shortest d-Sd paths in graph G, pick
a path Pd that has the fewest number of edges. Then, order the vertices of D as
(d1, d2, . . . , dt ), where t := |D|, so that:
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d

sv a b

D

SSd

Pv

Pd

Ps

Fig. 5 Construction of n different k-clubs in the proof of Theorem 3

(i) length(Pd1) ≤ length(Pd2) ≤ · · · ≤ length(Pdt ), and
(ii) if i < j and length(Pdi ) = length(Pd j ), then hops(Pdi ) ≤ hops(Pd j ).

This can be obtained by sorting the vertices d ∈ D by the lengths of their paths Pd ,
breaking any ties by hops(Pd). This gives the k-club denoted by Ti := V (Pdi ) ∪
V (Ps), where s is the endpoint of Pdi that belongs to S, and Ps is defined as above.

We claim that the characteristic vectors of the aforementioned k-clubs each belong
to the face where the inequality xa + xb − x(S) ≤ 1 holds at equality. This is true for
the k-clubs Ki as they contain precisely one vertex from R = {a, b} and no vertices
from S. This is also true for the k-clubs V (Ps) and Ti as they contain both a and b, as
well as one vertex from S.

We claim that the characteristic vectors of the aforementioned k-clubs are linearly
independent—and thus affinely independent. To see this, it is enough to show that these
(column) vectors, arranged from left to right in the order in which they were described,
form an upper triangular matrix with ones on the main diagonal, as depicted in Fig. 6.
[The entries of each column are to be arranged so that the first q entries correspond to
(v1, v2, . . . , vq), the next |S| entries correspond to the vertices of S, and the last |D|
entries correspond to (d1, d2, . . . , dt ).] By our construction of the k-clubs, it can be
seen that the center submatrix is the identity matrix and that the three submatrices near
the lower-left corner are zero matrices. So, all that is left to show is that the upper-left
and lower-right submatrices are themselves upper triangular.

To prove that the upper-left submatrix is upper triangular, we are to show that each
k-club Ki is a subset of {v1, v2, . . . , vi }. Suppose that this is not true for some k-club
Ki . Then, Ki contains a vertex v j ∈ V \(S ∪ D) with i < j . By construction of Ki ,
this implies that vertex v j is on a shortest vi -R path in G − S, and by the construction
of the ordering (v1, v2, . . . , vq), this implies that length(Pvi ) ≤ length(Pv j ). Let P ′

v j
be the subpath of Pvi that starts at v j and ends at (a vertex of) R. Then,

length(Pvi ) ≤ length(Pv j ) ≤ length(P ′
v j

) ≤ length(Pvi ).
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n − |S| − |D| |S| |D|

V \ (S ∪ D)

1 ?
? ?1

0
. . .

1

S 0
1 0

?1

0
. . .

1

D 0 0
1 ?1

0
. . .

1

Fig. 6 A matrix whose columns represent the k-clubs in the proof of Theorem 3

Here, the middle inequality holds by definition of Pv j , and the last inequality holds
because P ′

v j
is a subpath of Pvi and edges have nonnegative weights. Thus,

length(Pvi ) = length(Pv j ) = length(P ′
v j

),

which in turn implies that

hops(Pvi ) ≤ hops(Pv j ) ≤ hops(P ′
v j

) < hops(Pvi ).

Here, the first inequality holds by the construction of the ordering in addition to the
observation that length(Pvi ) = length(Pv j ), the middle inequality holds by definition
of Pv j together with the fact that length(Pv j ) = length(P ′

v j
), and the last inequality

holds because P ′
v j

is a proper subpath of Pvi . This has given us the contradiction
hops(Pvi ) < hops(Pvi ), which means that our assumption that v j ∈ Ki cannot hold.
Thus, it is true that Ki ⊆ {v1, v2, . . . , vi }, and so the upper-left submatrix is upper
triangular.

To prove that the lower-right submatrix is upper triangular, we are to show that
each k-club Ti is a subset of V \{di+1, . . . , dt }. Suppose that this is not true for some
k-club Ti . Then, Ti contains a vertex d j ∈ D with i < j . By construction of Ti , this
implies that vertex d j is on a shortest di -Sdi path in G, and by the construction of the
ordering (d1, d2, . . . , dt ), this implies that length(Pdi ) ≤ length(Pd j ). Let P ′

d j
be the

subpath of Pdi that starts at d j and ends at (a vertex of) Sdi . Then,

length(Pdi ) ≤ length(Pd j ) ≤ length(P ′
d j

) ≤ length(Pdi ).

Here, the middle inequality holds by definition of Pd j , and the last inequality holds
because P ′

d j
is a subpath of Pdi and edges have nonnegative weights. Thus,

length(Pdi ) = length(Pd j ) = length(P ′
d j

),
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0

1

1’

2 3 k· · ·

Fig. 7 When k ≥ 3, setting x∗
0 = x∗

k = 1 and x∗
i = 1

2 for all other nodes is feasible for the path-like
formulation but not for the cut-like formulation. Indeed, the length-k a, b-separator inequality x0 + xk ≤
1 + x2 is violated

which in turn implies that

hops(Pdi ) ≤ hops(Pd j ) ≤ hops(P ′
d j

) < hops(Pdi ).

Here, the first inequality holds by the construction of the ordering in addition to the
observation that length(Pdi ) = length(Pd j ), the middle inequality holds by definition
of Pd j together with the fact that length(Pd j ) = length(P ′

d j
), and the last inequality

holds because P ′
d j

is a proper subpath of Pdi . This has given us the contradiction
hops(Pdi ) < hops(Pdi ), which means that our assumption that d j ∈ Ti cannot hold.
Thus, it is true that Ti ⊆ V \{di+1, . . . , dt }, and so the lower-right submatrix is upper
triangular. This concludes the proof. ��

3.2 Formulation strength

In this section, we show that the cut-like formulation is at least as strong as the path-
like formulation, generalizing the k = 3 result of Almeida and Carvalho [4]. When
k ≥ 3, we also characterize the graphs for which the cut-like formulation is integral
as those with no 3-vertex independent set.

Proposition 3 The cut-like formulation is (always) at least as strong as the path-like
formulation. This inclusion is strict for the hop-based cases k ≥ 3. They are equally
strong in the hop-based case k = 2.

Proof First we show that the cut-like formulation is always at least as strong. Sup-
pose that x∗ satisfies the LP relaxation of the cut-like formulation. For each minimal
length-k a, b-connector C ∈ Ck

ab, let iC be a minimum-weight vertex of C , i.e.,
iC ∈ C and x∗

iC
= min{x∗

i | i ∈ C}, and set y∗
C = x∗

iC
. We show that (x∗, y∗)

satisfies the LP relaxation of the path-like formulation. Obviously, (x∗, y∗) satisfies
the constraints (10) and the 0-1 bounds. So, consider constraint (9) for some nonadja-
cent vertices a and b. Observe that S := ⋃

C∈Ck
ab

{iC } is a length-k a, b-separator, so

x∗
a + x∗

b ≤ 1 + ∑
s∈S x∗

s . So, constraint (9) is satisfied as

x∗
a + x∗

b ≤ 1 +
∑

s∈S

x∗
s ≤ 1 +

∑

C∈Ck
ab

x∗
iC

= 1 +
∑

C∈Ck
ab

y∗
C .
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Note that some x∗
v may make multiple appearances in the sum

∑
C∈Ck

ab
x∗

iC
but only

once in the sum
∑

s∈S x∗
s , hence the middle inequality.

The equality of the path-like and cut-like LP relaxations is easy to see in the hop-
based case k = 2, since the IP formulations themselves are equivalent. Figure 7 shows
that the inclusion can be strict when k ≥ 3. ��

Recall that the independence number α(G) is the size of a maximum independent
set in G.

Proposition 4 Under hop-based distances and k ≥ 3, the cut-like formulation is inte-
gral for graph G if and only if G has no 3-vertex independent set [i.e., α(G) ≤ 2].
Proof Suppose k ≥ 3 and let Qk(G) be the LP relaxation of the cut-like formulation
(including the 0-1 bounds).Without loss of generality, suppose that k ≤ n−1, where n
is the number of vertices. Since the formulation is correct, we are proving the statement
that Qk(G) = CLUBk(G) if and only ifα(G) ≤ 2. Recall that Qk(G) andCLUBk(G)

are both full dimensional and thus have unique half-space representations up to scalar
multiples.

(⇒) By the contrapositive. Suppose there is an independent set I with three vertices.
Then, the inequality x(I ) ≤ 1 induces a facet of CLUBk(G[I ]). Lifting this seed
inequality shows that CLUBk(G) has a facet-defining inequality of the form x(I ) +∑

i∈V \I πi xi ≤ 1 with at least three positive coefficients. But, this inequality is not
part of the definition of Qk(G), so Qk(G) �= CLUBk(G).

(⇐) Suppose α(G) ≤ 2. Observe that the subgraph G[S] induced by a vertex set
S is either disconnected or has diam(G[S]) ≤ 3. (Otherwise, if G[S] is connected
with diam(G[S]) ≥ 4, then a 3-vertex independent set {v0, v2, v4} can be obtained
from a diameter-inducing path v0-v1-v2-v3-v4-· · · of G[S].) Thus, CLUBn−1(G) =
CLUB3(G). Wang et al. [42] have shown that CLUBn−1(G) = Qn−1(G) when
α(G) ≤ 2. So,

CLUB3(G) ⊆ CLUBk(G) ⊆ Qk(G) ⊆ Qn−1(G) = CLUBn−1(G) = CLUB3(G),

and thus Qk(G) = CLUBk(G). ��

3.3 Separation problem and extended formulations

In this section, we discuss the separation problem for the length-k a, b-separator
inequalities (17), particularly for the case that distances are measured in hops. Since
there are only O(n2) minimal inequalities when k = 2, we will ignore that case.
We observe that separation is polynomial-time solvable for k ∈ {3, 4} by reduction
to min-cut, and show that separation is hard for each k ≥ 5. By the equivalence
of separation and optimization [17], we can optimize over the LP relaxations of the
cut-like formulation in polynomial time when k ∈ {3, 4}, but this is hard when k ≥ 5.

By standard arguments, the cut-like formulation admits a polynomial-size extended
formulation when k ∈ {3, 4}. This follows because the separation problem can be
written as a (particular) min-cut problem, which can be solved via a linear program.
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By techniques of Martin [24], this immediately gives the polynomial-size extended
formulations. However, the resulting formulations are too large to be practical, so we
do not discuss them further. The interested reader is invited to consult Lovász et al.
[20] or Xu [44] for more details about the reduction to min-cut.

The separation problem for the cut-like formulation can be stated as follows.

Problem Separation for length-k a, b-separator inequalities (17).
Input A graph G = (V , E), vertex weights x∗ ∈ [0, 1]n , positive integer k.
Output (if any exist) nonadjacent vertices a, b ∈ V and a length-k a, b-separator
S ⊆ V \{a, b} such that x∗

a + x∗
b − ∑

i∈S x∗
i > 1.

This problem is closely related to the Length-Bounded Node-Cut problem, which
is known to be NP-hard for each L ≥ 5 and easy for L ∈ {2, 3, 4}. Hardness for L ≥ 5
was shown by Baier et al. [7], and polynomiality when L = 4 essentially follows by
Lovász et al. [20]. The optimization version of this problem is given below, and the
associated decision problem will be styled Length- Bounded Node Cut.

Problem Length-Bounded Node-Cut.
Input A graph G = (V , E), nonadjacent nodes p and q, a weight wv ≥ 0 for each
v ∈ V \{p, q}, and a positive integer L .
Output A vertex subset S ⊆ V \{p, q} of minimum weight

∑
i∈S wi such that

distG−S(p, q) > L (with respect to hop-based distances).

3.3.1 Separation is hard for k ≥ 5

Here, we show that it is hard to separate the length-k a, b-separator inequalities when
k ≥ 5 and distances are hop-based. As an easy consequence, separation is hard for all
k > 0 under weighted distances.

Theorem 4 For each k ≥ 5, it is coNP-complete to determine whether a given x∗ ∈ Rn

satisfies all length-k a, b-separator inequalities (17).

Proof Membership in coNP is clear, as a suitable witness for a “no” instance is given
by nonadjacent nodes a and b and a length-k a, b-separator S ⊆ V \{a, b}. Consider an
instance ofLength- Bounded Node- Cut given by graph G = (V , E), nodes p and
q, and distance threshold L ≥ 5 and a target weight W for the cut S. We suppose that
the node weights wv are all equal to one. This variant of Length-Bounded Node-Cut
is NP-hard [7]. Let k = L and n = |V |. We construct an x∗ ∈ [0, 1]n that violates a
length-k a, b-separator inequality (17) for G if and only if G has a length-L-bounded
node-cut of size W . Namely, let x∗

p = x∗
q = 2n+1

4n and x∗
i = 1

2n(W+1) for all other
nodes i of G.

(⇐) Suppose G has a length-L-bounded node-cut S′ ⊆ V of size W . Then x∗
violates the inequality (17) for a = p, b = q, and S = S′, since

x∗
a + x∗

b −
∑

i∈S

x∗
i = x∗

p + x∗
q −

∑

i∈S′
x∗

i

= 2n + 1

4n
+ 2n + 1

4n
− W

(
1

2n(W + 1)

)
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= 1 + 1

2n(W + 1)
> 1.

(⇒) Suppose that x∗ violates a length-k a, b-separator inequality (17) with length-k
a, b-separator S ⊆ V \{a, b}. Then no vertex of V \{p, q} can belong to {a, b} since
otherwise

x∗
a + x∗

b −
∑

i∈S

x∗
i ≤ x∗

a + x∗
b ≤ 2n + 1

4n
+ 1

2n(W + 1)
≤ 1,

and the inequality (17) is satisfied. Thus, {a, b} = {p, q}. Then,

1 < x∗
a + x∗

b −
∑

i∈S

x∗
i = x∗

p + x∗
q −

∑

i∈S

x∗
i

= 2n + 1

4n
+ 2n + 1

4n
− |S|

(
1

2n(W + 1)

)

.

So, |S| < W + 1, and S is a length-L-bounded node-cut of size ≤ W . ��

3.3.2 Separation is easy for k ∈ {2, 3, 4}

As noted above, the Length-Bounded Node-Cut problem is polynomial-time solvable
for L ∈ {2, 3, 4}. The cases L = 2 and L = 3 can be considered folklore, and the
case L = 4 was essentially shown by Lovász et al. [20] by reduction to min-cut.
The min-cut instance that is created has linear size with respect to the input graph, so
Length-Bounded Node-Cut with L = 4 can be solved in time O(mn) [29].

Thus, to solve the separation problem for the length-k a, b-separator inequalities
when given x∗ ∈ [0, 1]n , one can solve, for each pair {a, b} of nonadjacent vertices,
a Length-Bounded Node-Cut problem to find a minimum-weight S and then check
whether x∗

a + x∗
b − ∑

i∈S x∗
i > 1. Since there are

(n
2

) − m a, b-pairs, the total running
time would be O(mn3).

There are someways to speed up separation in practice. For example, if x∗
a +x∗

b ≤ 1,
then certainly all length-k a, b-separator inequalities will be satisfied. The same holds
if x∗

a +x∗
b ≤ 1+x∗(N (a)∩N (b)) since every length-k a, b-separator has N (a)∩N (b)

as a subset. However, we are unaware of a way to achieve a better worst-case running
time. For these and other reasons (e.g., poor initial performance, simplicity of the
approach, ease of implementation), we do not employ fractional separation in our
implementation. As such, we do not bother detailing the Length-Bounded Node-Cut
algorithms for L ∈ {3, 4} that are implied by Lovász et al. [20].

4 Computational experiments

In this section, we evaluate the performance of the path-like and cut-like formulations
with that of existing formulations and approaches for solving the maximum k-club
problem.
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All of our experiments are conducted on a Dell Precision Tower 7000 Series (7810)
machine running Windows 10 enterprise, x64, with Intel® Xeon® Processor E52630
v4 (10 cores, 2.2 GHz, 3.1 GHz Turbo, 2133 MHz, 25 MB, 85 W)—that is 20 logical
processors—and 32 GB memory. The IP formulations are implemented in Microsoft
Visual Studio 2015 in C++ for Gurobi version 7.5.1. We impose a time limit of 3600
s on each instance and set the method parameter to concurrent.

First, we propose a heuristic for maximum k-club that is based on the k-clique and
DROP heuristic of Bourjolly et al. [11]. Then, we describe a preprocessing procedure.
Next, due to the exponential number of constraints defining the cut-like formulation,
we explain our implementation of it. Then, we compare running times for the different
formulations on test instances considered by Shahinpour andButenko [34] andMoradi
and Balasundaram [27]. We also propose a decomposition procedure to handle the
exorbitant number of conflicts generated for some of the larger instances. Lastly,
we compare running times on the synthetic instances considered by Veremyev and
Boginski [38] and Moradi and Balasundaram [27]. For simplicity, we limit ourselves
to hop-based distances in the experiments. Accordingly, all discussion (for heuristics,
preprocessing, and separation) concerns only the hop-based case, although most, if
not all, of the ideas straightforwardly extend to the edge-weighted case.

4.1 Heuristic and preprocessing

The heuristic used in our implementation is based on the k-clique and DROP heuristic
of Bourjolly et al. [11]. Recall the definition of a (distance) k-clique.

Definition 4 (k-clique) A subset S ⊆ V of vertices in a graph G = (V , E) is called a
(distance) k-clique if, for every two vertices i, j ∈ S, distG(i, j) ≤ k.

The following pseudocode for k-clique andDROPuses two notions that we have not
discussed yet. The first is the kth power Gk = (V k, Ek) of a graph G = (V , E), which
has the same vertex set, i.e., V k = V , and two nodes u, v in Gk are adjacent if their
distance distG(u, v) in G is at most k. Thus, a k-clique in G is equivalent to a clique
in Gk . The second is the k-hop neighborhood N k

G(v) = {w ∈ V | distG(v,w) ≤ k}
of a vertex v. Observe that v belongs to N k

G(v), assuming k ≥ 0.

k-clique and DROP (Bourjolly et al. [11]):

1. find a maximum k-clique S in G (i.e., a maximum clique in Gk);
2. while S is not a k-club in G do

– pick v ∈ S with the fewest nearby nodes |N k
G[S](v) ∩ S| in G[S];

– S ← S\{v};
3. return S.

One possible problem is that step 1 of k-clique and DROP requires us to find a max-
imum k-clique in G, which is NP-hard, even to approximate [6]. This motivates our
modification, which is to heuristically find a large k-clique.
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Our heuristic:
1. initialize S ← V and create Gk ;
2. while S is not a clique in Gk do

– pick v ∈ S of minimum degree in Gk[S];
– S ← S\{v};

3. while S is not a k-club in G do

– pick v ∈ S with the fewest nearby nodes |N k
G[S](v) ∩ S| in G[S];

– S ← S\{v};
4. return S.

Creating the kth power graphGk takes time O(nm) by runningBFS fromeach node.
Step 2, which finds a maximal clique in Gk , can be implemented to run in time linear
in the size of Gk [25] and finds large cliques in practice [41]. Step 3, which performs
DROP, can take time O(nm) in each of the O(n) iterations of the while loop. This
gives a time bound of O(mn2), which is rather pessimistic given that the number of
iterations of the while loop in step 3 is often zero in practice. Moreover, the time bound
O(nm) within each iteration is also pessimistic given that when this loop is entered, S
ismuch smaller than n. Indeed, as the results in Table 1 show, the times for our heuristic
are very reasonable in practice. The longest time of 22.73 s is for the graph cs4 with
k = 4. (This is the sum of the heuristic time and the preprocessing time.) For context,
our implementation takes 23 s to compute the diameter of this graph using BFS.

Once the heuristic terminates, we remove many vertices from the graph in a pre-
processing step (that is, prior to invoking the MIP solver). Specifically, if the heuristic
gives us a k-club of size p, we can remove all vertices v that have fewer than p nodes
in their k-hop neighborhood N k

G(v). This can be done iteratively, since a deleted vertex
may impact the size of the remaining vertices’ k-hop neighborhoods. This is essentially
the k-core peeling used for the maximum clique problem [1,40] which is also used for
k-club [27,38]. We implement it as follows, where the (p −1)-core of a graph G is the
(unique) inclusion-maximal subgraph ofG that hasminimumdegree at least p−1 [33].

Preprocessing when given a lower bound p on the k-club number:
1. create the kth power graph Gk ;
2. find the (p − 1)-core G ′ = (V ′, E ′) of Gk ;
3. return G[V ′].
As before, step 1 takes time O(nm) when distances are hop-based. Step 2 takes linear
time O(|V k | + |Ek |) = O(n2) with respect to Gk by the algorithm of Matula and
Beck [25].3 Thus, the total time O(nm) is dominated by step 1.

Table 1 shows that the time spent on this preprocessing is reasonable and the
reduction in graph size can be substantial. On these 66 instances, our heuristic finds
(what turn out to be) 36 optimal solutions, and the preprocessing is able to prove
optimality for 26 of them.

3 See also the later implementation of Batagelj andZaversnik [10]which uses 3 arrays instead of linked lists.
Our implementation is the same as Walteros and Buchanan [41], which uses 3 arrays and always pulls off a
vertex of minimum degree in the remaining graph. This second property is satisfied in the implementation
of Matula and Beck, but not of Batagelj and Zaversnik.
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4.2 Implementing the cut-like formulation

Since the cut-like formulation can have exponentially many constraints when k ≥ 3,
we add them on-the-fly only as needed. For this functionality, we invoke the Gurobi
parameter LazyConstraints. Our implementation proceeds roughly as follows.

Initialize the formulation with the conflict constraints xa + xb ≤ 1 for vertices a
and b that are far apart in G, i.e., distG(a, b) > k. We could instead add stronger cuts
of the form x(I ) ≤ 1, where I ⊆ V is an independent set in the kth power graph Gk .
However, MIP solvers detect these stronger cuts automatically and effectively through
clique merging [2].

Then, when theMIP solver encounters a possible solution x∗ ∈ {0, 1}n that satisfies
the initial constraints, we check if the selected vertices K = {i ∈ V | x∗

i = 1}
form a k-club. If not, then for every pair of “far” vertices a and b in G[K ] (i.e.,
distG[K ](a, b) > k), we detect and add a violated minimal length-k a, b-separator
inequality. In particular, observe that in this case S′ = V \K will be a length-k a, b-
separator and we could add the violated inequality xa + xb ≤ 1 + x(S′). But, this
inequality can and should be strengthened to xa +xb ≤ 1+x(S), where S is a minimal
subset of S′ that is also a length-k a, b-separator. For this, we use Minimalize.

Minimalize:

1. initialize S ← S′;
2. for s ∈ S do

– compute distGs (a, s) and distGs (s, b), where Gs = G − (S\{s});
– if distGs (a, s) + distGs (s, b) > k, then update S ← S\{s};

3. return S.

Observe thatMinimalize returns aminimal length-k a, b-separator and that its running
time is O(|S′|m) = O(nm) when distances are hop-based. In practice, one can speed
upMinimalize by first removing vertices v from S′ that are not on a length-k path from
a to b in G, i.e., distG(a, v) + distG(v, b) > k; this takes linear time when distances
are hop-based. Also, a vertex v from S that neighbors both a and b will belong to
every minimal length-k a, b-separator and can be fixed in S, i.e., skipped in step 2.

We experimented with a few alternative implementations but did not pursue them
due to relatively poor initial performance. For example, worse performance was
observed when adding a single violated inequality (instead of adding one violated
inequality for every far pair {a, b}). Attempts at fractional separation for k = 3 were
also unsuccessful, although the implementation was rather primitive. It is possible
that more advanced implementations would improve the results, e.g., using heuris-
tic or approximate separation [7], but we were already content with the performance
of lazy integer separation. Experiments with lifting (using Lemma 1 or using another
quicker approach) did not improve the performance. These unsuccessful attempts with
lifting can be found in the commented portions of the callback code.

In the case that the graph is disconnected after preprocessing, we still solve a single
MIP. Others, like Moradi and Balasundaram [27], solve each component separately.
This leads to implementation questions such as: Which components should be solved
first? Instead, likeCarvajal et al. [14],we create a binary variable z j for each component
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G j of G representing the decision to pick the k-club from within component G j . We
impose that one component is chosen (

∑
j z j = 1) and that a vertex i cannot be

chosen if its component G j is not selected (xi ≤ z j ). This adds only O(n) variables
and constraints to the formulation and avoids many implementation questions.

4.3 Results for real-life instances

In this section, we compare running times on the instances considered by Shahinpour
and Butenko [34] and Moradi and Balasundaram [27] that were drawn from the 10th
DIMACS ImplementationChallenge onGraphPartitioning andGraphClustering [15].
We exclude all instances that were solved by the heuristic and preprocessing from
Sect. 4.1 as they would provide little insight. To make the comparisons as fair as
possible, all experiments are conducted using the same computer,MIP solver, heuristic
solution, and preprocessing.We employ the connected component variables z j in each
formulation.

We explore two different implementations of the k = 2 common-neighbor for-
mulation. In the first implementation, which we refer to as CN, we add all cut-like
constraints initially. Meanwhile, implementation CUT only adds the conflict con-
straints xa + xb ≤ 1 upfront; other cut-like inequalities are added on-the-fly.

Table 2 gives the time to solve the k = 2 common-neighbor formulation (using CN
and CUT implementations), the maximum 2-club sizes, and the number of constraints
added for each implementation. As the table shows, implementation CUT avoids
adding many of the constraints defining the CN formulation and is faster. For example,
for polblogs, it suffices to add 171,237 out of 621,498 cut-like constraints, reducing
the solve time from 19.49 to 4.93 s.

In Tables 3 and 4, we compare the time to solve the maximum k-club problem for
k ∈ {3, 4} using the following formulations:

– recursive (R), resembling that of Veremyev et al. [38,39], see Appendix,
– canonical hypercube cut (CHC), by Moradi and Balasundaram [27],
– path-like (PATH), and
– cut-like (CUT).

Tables 3 and4demonstrate thatCUTperforms the best among the four formulations.
It solves all of the instances that R, CHC, and PATH can solve, plus 7, 5, and 4
others, respectively. CUT’s best performance (relative to the other formulations) is on
email with k = 4, where it finishes in 1.82 s, while the others struggle. Moreover,
formulations R and CHC fail on some small instances such as on the 115-node graph
football when k = 3. Some of the larger instances like cs4 cause each of the
formulations to crash. Investigating further, we find that CUT performs poorly on
those instances that require a large number of conflict constraints (more than 2million),
while performing quite well on all other instances (never taking longer than 7 min).
The number of conflict constraints for each instance is reported in Table 5. These
observations motivate the decomposition procedure given next.
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Table 2 Maximum 2-club sizes on DIMACS-10 graphs

Graph n m ω̄2 # Constraints Solve time, k = 2

CN CUT CN CUT

karate 34 78 18 456 144+0 0.02 0.01

dolphins 62 159 13 1670 927+16 0.06 0.03

polbooks 105 441 28 4346 1847+0 0.10 0.05

football 115 613 16 5942 3636+92 2.65 1.49

jazz 198 2742 103 12,652 1326+1 0.33 0.06

email 1133 5451 72 519,948 227,841+0 11.41 3.94

polblogs 1490 16,715 352 621,498 171,237+0 19.49 4.93

data 2851 15,093 18 3,692,869 2,122,988+0 1947.13 1224.76

uk 4824 6837 5 11,576,836 11,459,801+0 3332.52 3266.55

add32 4960 9462 32 223,111 1017+0 1.77 0.81

whitaker3 9800 28,989 9 47,986,111 47,928,432+0 [8,18] [8,18]

crack 10,240 30,380 10 52,393,300 52,315,672+0 [9,18] [9,18]

cs4 22,499 43,858 6 253,047,393 252,937,499+0 MEM MEM

We report the total number of cut-like constraints to solve the k = 2 common neighbor formulation using
CN and CUT implementations. For each implementation, we also report the total time in seconds (including
preprocessing, heuristic, and model build time), or the best lower and upper bounds [LB,UB] within a 3600
s time limit. Cases where using an implementation leads to memory crashes are reported as MEM

4.3.1 Dealing with too many conflicts

As discussed earlier, we initialize the cut-like formulation with the conflict constraints
xa + xb ≤ 1 for vertices a and b that are far apart in G. Sometimes this results in
too many conflicts for our computer to handle, as reported in Table 5. For example,
whitaker3, crack, and cs4 have more than 47 million, 52 million, and 252
million conflicts, respectively, when k = 3. This leads to memory crashes (e.g., cs4)
or difficulties solving the IP (uk). In our experiments, instances with more than 2
million conflicts overburden the MIP solver. To handle such instances, we developed
the decomposition method given below, which we call ICUT.

ICUT:

1. initialize K to be the k-club found by the heuristic and preprocessing proposed in
Sect. 4.1;

2. compute a minimum-degree ordering (v1, v2, . . . , vn) of Gk ;
3. T ← ∅;
4. for i = n down to 1 do

– T ← T ∪ {vi };
– Si ← N k

G[T ](vi );
– if |Si | ≤ |K | continue;
– Ki ← a maximum k-club in G[Si ] that contains vi ;
– if |Ki | > |K | then K ← Ki ;

5. return K .
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Table 3 Results for DIMACS-10 graphs

Graph n m ω̄3 Solve time, k = 3

R CHC PATH CUT

dolphins 34 78 29 0.54 0.01 0.04 0.01

polbooks 105 441 53 1.01 0.01 0.07 0.01

adjnoun 112 425 82 6.48 0.03 0.39 0.01

football 115 613 58 [24,63] [24,67] 8.11 0.29

jazz 198 2742 174 69.43 0.03 3.14 0.03

celegansn 297 2148 243 96.85 5.03 4.41 0.07

celegansm 453 2025 371 337.12 0.08 6.44 0.07

email 1133 5451 212 LPNS [192,233] [208,239] 241.42

polblogs 1490 16,715 776 LPNS 3.37 1132.06 1.67

data 2851 15,093 32 LPNS [32,36] [28,47] [31,36]

uk 4824 6837 8 MEM [7,16] [7,17] [7,16]

hep-th 8361 15,751 120 [114,124] [114,123] 2676.83 171.82

whitaker3 9800 28,989 15 MEM [13,32] [13,32] [13,32]

crack 10,240 30,380 17 MEM [15,31] [15,31] [15,31]

PGPgiantc 10,680 24,316 422 633.09 5.84 27.63 5.82

cs4 22,499 43,858 12 MEM MEM MEM MEM

For each k = 3 and each formulation, we report the total time in seconds (including preprocessing, heuristic,
and model build time), or the best lower and upper bounds [LB,UB]within a 3600 s time limit. Cases where
the LP relaxation were not solved within the time limit (due either to build time or solve time) are reported
as LPNS and cases where using a formulation leads to memory crashes are reported as MEM

Table 4 Results for DIMACS-10 graphs

Graph n m ω̄4 Solve time, k = 4

R CHC PATH CUT

dolphins 34 78 40 1.14 0.01 0.16 0.01

polbooks 105 441 68 13.99 0.03 1.09 0.03

celegansm 453 2025 432 207.38 0.09 42.78 0.06

email 1133 5451 651 LPNS [642,654] LPNS 1.82

polblogs 1490 16,715 1127 LPNS 0.86 LPNS 0.74

data 2851 15,093 52 MEM [49,58] [46,75] [49,58]

uk 4824 6837 14 MEM [11,26] [9,26] [11,26]

hep-th 8361 15,751 344 LPNS [344,347] [336,347] 404.38

whitaker3 9800 28,989 23 MEM [19,49] LPNS [19,49]

crack 10,240 30,380 31 MEM [28,61] LPNS [28,61]

cs4 22,499 43,858 18 MEM MEM MEM MEM

For k = 4 and each formulation, we report the total time in seconds (including preprocessing, heuristic, and
model build time), or the best lower and upper bounds [LB,UB] within a 3600 s time limit. Cases where
the LP relaxation were not solved within the time limit (due either to build time or solve time) are reported
as LPNS and cases where using a formulation leads to memory crashes are reported as MEM
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Table 5 For each k ∈ {2, 3, 4}, we report the number of conflict constraints for each instance after prepro-
cessing

Graph n m # Conflicts

k = 2 k = 3 k = 4

karate 34 78 144 0 0

dolphins 62 159 927 19 33

lesmis 77 254 0 0 0

polbooks 105 441 1847 4 728

adjnoun 112 425 0 179 0

football 115 613 3636 308 0

jazz 198 2742 1326 26 0

celegansn 297 2148 0 411 0

celegansm 453 2025 0 193 1

email 1133 5451 227,841 216,781 42,340

polblogs 1490 16,715 171,237 39,696 1509

netscience 1589 2742 0 0 0

add20 2395 7462 0 0 0

data 2851 15,093 2,122,988 2,276,728 2,410,756

uk 4824 6837 11,459,801 11,047,360 11,112,993

power 4941 6594 0 0 0

add32 4960 9462 1017 0 0

hep-th 8361 15,751 0 700,013 1,432,395

whitaker3 9800 28,989 47,928,432 47,842,511 47,728,908

crack 10,240 30,380 52,315,672 52,167,356 52,009,002

PGPgiantc 10,680 24,316 0 8919 0

cs4 22,499 43,858 252,937,499 252,715,995 252,330,477

This method iteratively solves small subproblems, much like the Iterative Trim
Decomposition Branch-and-Cut (ITDBC) algorithm of Moradi and Balasundaram
[27]. However, ICUTuses the cut-like formulation instead of theCHC formulation and
defines its subproblems differently. This wasmotivated by the observation that ITDBC
takes timeΘ(n2m) just to identify the subproblems,which ended up being a bottleneck
in our initial experiments. To address this, we borrowed ideas from the maximum
clique literature to decompose the maximum k-club problem into n subproblems in
time Θ(nm). In particular, we use a minimum degree ordering, which, as defined by
Nagamochi [28], is a vertex ordering (v1, v2, . . . , vn) in which vertex vi has minimum
degree in the subgraph induced by {vi , vi+1, . . . , vn} for all i ∈ [n]. This vertex
ordering is closely related to k-cores and degeneracy orderings, and can be found in
linear time by an adaptation of the algorithms of Matula and Beck [25]; Batagelj and
Zaversnik [10] as described, for example, by Walteros and Buchanan [41]. Similar to
Moradi and Balasundaram [27], we terminate a subproblem early (with the Gurobi
parameter Cutoff) if it has been determined that no solution better than |K | exists.
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Proposition 5 Algorithm ICUT returns a maximum k-club in G.

Proof Let K ∗ be a maximum k-club in G and let K be the k-club returned by ICUT.
Clearly, |K | ≤ |K ∗| since K is a k-club and K ∗ is a maximum k-club. For the reverse
inequality, let vi∗ be the earliest vertex of K ∗ in the vertex-ordering (v1, v2, . . . , vn).
See that K ∗ is feasible for the subproblem that gives Ki∗ . Thus, |K | ≥ |Ki∗ | ≥ |K ∗|.
So, |K | = |K ∗|, i.e., K is maximum. ��

Table 6 compares the time to solve the maximum k-club problem for k ∈ {2, 3, 4}
usingCUT and ICUT. The results show that ICUToutperformsCUTwhen the instance
has a large number of conflict constraints (more than 2 million). While ICUT solves
all instances in under 9 min, CUT fails to solve 13 of them. As an example, when
k = 3, ICUT solves data in 5.01 s, while CUT cannot solve it to optimality. In a
more extreme example, ICUT solves each cs4 instance in under 2 min, while CUT
cannot handle the large number of conflicts, crashing on each of them.

However, for 13 instances that have a more reasonable number of conflicts, CUT
performs better. For example, when k = 4, CUT solves email in 1.82 s, while ICUT
takes 28.90 s. Another example is polblogswith k = 3 where CUT finishes in 1.67
s, while ICUT takes 37.84 s. Thus, CUT and ICUT both have their advantages, and
either one could be preferable depending on the instance and the number of conflicts.

4.4 Results for synthetic instances

In Tables 7 and 8, we compare running times on the synthetic instances considered by
Veremyev and Boginski [38] and by Moradi and Balasundaram [27]. These instances
were randomly generated byVeremyev and Boginski with 10 graphs at each parameter
setting (n, ρ)where n is the number of nodes and ρ is the edge density.We consider the
same diameter bounds k ∈ {3, 4, 5, 6, 7} considered byVeremyev andBoginski and by
Moradi and Balasundaram. However, for formulation PATH, we only give results for
k ∈ {3, 4} due to its prohibitively large size. The heuristic and preprocessing proposed
in Sect. 4.1 are employed in the following experiments.

As Tables 7 and 8 show, formulation CUT is also the clear winner on synthetic
graphs. For example, when (n, k, ρ) = (300, 5, 1.5%), CUT solves all 10 instances
in an average of 1.41 s, while the formulations R and CHC solve none of them (within
the 1 h time limit). Even worse, formulations R and CHC fail on instances with as
few as 200 and 100 nodes, respectively. In fact, they solve none of the instances with
(n, k, ρ) = (200, 4, 2%).

Recall that we test each formulation on 10*3*5*3 = 450 instances (180 for PATH).
Formulation CUT solves each of them in under 1 h (actually in under 35 min). Mean-
while, R and CHC cannot solve 84 and 117 of the synthetic instances, respectively,
within the 1 h time limit.

The formulation CUT is at its worst when (n, k, ρ) = (300, 4, 1.5%), where it
averages 452.34 s.However, this is still considerably better than the other formulations.
The 10 times (in s) are: 2045.94, 161.31, 1.66, 25.33, 1731.26, 5.51, 278.74, 22.82,
206.40, 44.41. These times are longer than the 1 or 2 s taken by CUT onmost synthetic
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Table 7 Results for synthetic graphs with k ∈ {3, 4}
n ρ (%) k = 3 k = 4

ω̄3 R CHC PATH CUT ω̄4 R CHC PATH CUT

100 2 12.2 0.56 0.02 0.05 0.02 21.1 2.56 0.02 0.15 0.02

3 16.2 6.18 0.14 0.25 0.09 32.3 52.42 (7) 1.29 0.13

4 21.1 41.34 (8) 1.33 0.29 52.4 550.42 (1) 1.88 0.11

200 1 12.6 2.54 0.12 0.27 0.12 23.8 6.29 0.14 0.72 0.16

1.5 16.6 16.42 0.70 1.35 0.75 34.8 285.07 34.95 6.04 0.70

2 20.4 201.70 2.60 8.00 2.09 48.6 (0) (0) 551.84 21.07

300 0.5 10.0 0.13 0.01 0.02 0.01 15.8 1.17 0.04 0.10 0.04

1 17.4 33.94 1.88 4.96 1.95 37.8 235.45 1.85 10.77 2.03

1.5 12.8 444.22 7.62 23.31 6.60 62.0 (0) (1) (7) 452.34

For each (n, ρ) we give the average time over the 10 instances. If not all 10 were solved within the 1 h time
limit, we only give the number solved (in parenthesis)

instances. It may be interesting to see what properties these instances have (that others
do not) that make them so challenging.

5 Conclusion

In this paper, we propose new path-like and cut-like formulations for detecting low-
diameter clusters in graphs. They simplify, generalize, and outperform several previous
formulations. Indeed, on the testbed of synthetic graphs developed by Veremyev and
Boginski [38], our cut-like formulation for the maximum k-club problem never takes
longer than 35 min, while previously existing formulations fail to solve 84 instances
(ormore) in a 1 h time limit. Similar performance is observed on real-life instances that
were considered by Shahinpour and Butenko [34] andMoradi and Balasundaram [27].

We suspect that our cut-like formulation will work well for problems in wildlife
reserve design, political districting, and others where compactness is key in a “good”
solution. Our implementation is relatively simple and publicly available, allowing
these extensions to be done in future work. Our implementation does not use any
procedures (e.g., fractional separation routines) that require tuning.

In ongoing work, we study fault-tolerant variants of k-clubs, like the r -robust k-
clubs ofVeremyev andBoginski [38] and the h-hereditary k-clubs defined by Pattillo et
al. [30]. Indeed, the latter can be formulated by modifying the length-k a, b-separator
inequalities to hxa +hxb ≤ h+x(S). Based on experience here and in the past [13,37],
we expect this to be a practical approach for small values of h.

Another topic for futurework is to identify even stronger formulations. Observe that
(before clique merging) the LP relaxation of the cut-like formulation (our strongest
formulation) has the all-half vector as a feasible solution, regardless of the graph’s
topology. Can we do better? One possible technique is to start with inequalities of the
form x(I ) ≤ 1 where I is an independent set and lift the other vertices. When k = 2,
this gives the I2DS inequalities ofMahdavi Pajouh et al. [23], which give all nontrivial
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facets when the input graph is a forest. Is there a similar, nice set of inequalities for
general k? If so, can they be used effectively?We note that Mahdavi Pajouh et al. show
empirically that highly-violated I2DS inequalities often exist, but they are NP-hard to
separate and have yet to be successfully employed.

Acknowledgements Thismaterial is based uponwork supported by the National Science Foundation under
Grant No. 1662757.

Appendix: Derivation of recursive formulation

Here, we provide a “recursive” integer programming formulation for k-clubs in a
directed graph D = (V , A) when k ≥ 3 and distances are hop-based, similar to that
of Veremyev and Boginski [38]. If the input graph is undirected, first replace each
undirected edge {u, v} by its directed counterparts (u, v) and (v, u).

Denote by N−(i) := { j ∈ V | ( j, i) ∈ A} the set of incoming neighbors to node
i . The binary variable xi represents the decision to include vertex i in the k-club. The
binary variable yt

i j equals one if and only if there exists a path from i to j of length
exactly t whose vertices (including i and j) belong to the chosen k-club. This variable
is only defined when t ≥ 1 and should not be confused with yi j raised to the t th power.
In the formulation, we should write constraints that impose the following condition:

yt
iv = 1 ⇐⇒ xv = 1 and there exists j ∈ N−(v) such that yt−1

i j = 1.

In words, there is a path (across k-club nodes) from i to v of length t if and only if
(i) node v belongs to the k-club, and (ii) there is a path (using only k-club nodes) of
length t − 1 from node i to some incoming neighbor j of v (Fig. 8).
When t ≥ 2, this equivalence can be formulated as follows.

(⇐) yt−1
i j + xv ≤ yt

iv + 1 ∀ j ∈ N−(v)

(⇒) yt
iv ≤ xv and yt

iv ≤
∑

j∈N−(v)

yt−1
i j .

For the case that t = 1, we want to impose that y1i j = 1 if and only if xi = x j = 1 and

(i, j) ∈ A. This can be formulated as follows, where the variable y1i j is only defined
when (i, j) ∈ A.

(⇐) xi + x j ≤ y1i j + 1

(⇒) y1i j ≤ xi and y1i j ≤ x j .

Fig. 8 An illustration to explain
the variable yt

i j i j v
t − 1 1

ytiv = 1
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So far, the constraints impose that the yt
i j variables take their intended values. Now, to

enforce that the selected vertices form a k-club, if vertices i and j are both selected,
then there must be an i, j-path of length ≤ k, i.e.,

xi + x j ≤ 1 +
k∑

t=1

yt
i j .

Observe that this constraint can easily bemodified to impose different distance require-
ments depending on i and j . In summary, the formulation is as follows, where
T≥2 := {2, . . . , k}.

xi + x j ≤ y1i j + 1 (i, j) ∈ A

y1i j ≤ xi (i, j) ∈ A

y1i j ≤ x j (i, j) ∈ A

yt−1
i j + xv ≤ yt

iv + 1 i ∈ V \{ j, v}, ( j, v) ∈ A, t ∈ T≥2

yt
iv ≤ xv i ∈ V \{v}, v ∈ V , t ∈ T≥2

yt
iv ≤

∑

j∈N−(v)

yt−1
i j i ∈ V \{v}, v ∈ V , t ∈ T≥2

xi + x j ≤ 1 +
k∑

t=1

yt
i j i ∈ V \{ j}, j ∈ V

xi ∈ {0, 1} i ∈ V

yt
i j ∈ {0, 1} i ∈ V \{ j}, j ∈ V , t ∈ {1, . . . , k}.

Since MIP solvers use sparse matrix representation, the number of nonzeros in the
formulation is more indicative of its size than the quantity obtained by multiplying the
number of variables by the number of constraints.

Theorem 5 The above is a correct formulation for k-clubs in digraphs (under hop-
based distances) and has O(kn2) variables, O(knm) constraints, and O(knm)

nonzeros.

Not all of these variables and constraints may be necessary. For example, if the
input graph is undirected we can assume yt

i j = yt
ji . If desired, the user can impose the

constraints yt
i j = yt

ji when implementing the formulation (as we do), and the solver
will perform the substitutions in presolve.

This formulation is essentially the k-club formulation introduced by Veremyev and
Boginski [38]. However, we feel that it is important to explicitly provide it here–
for a number of reasons. One reason is for completeness. A second reason is that
there are multiple “recursive” formulations for k-club appearing in the literature and
we wanted to point out exactly with which one we compared. For example, in later
work, Veremyev et al. [39] made a small change to the variables’ definitions, defining
them for paths of length at most k, instead of for paths of length exactly k. They
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also strengthened the formulation by disaggregating some big-M constraints, which
was found to perform better computationally despite the increase in the number of
constraints. (This is perhaps unsurprising given that this improvement in strength
came at essentially no cost to the formulation’s size measured with respect to the
number of nonzeros.) A third reason is that we perform some variable fixing in our
implementation and need to describe the formulation in order to clearly explain which
variables we fix and why it is safe to do so. Fourth, our explanation of the formulation
is perhaps simpler than the original explanation given by Veremyev and Boginski [38],
in part, because we give the direct interpretation of the constraints, instead of arriving
at the formulation through a linearization procedure. A fifth reason for including this
formulation in the appendix is to have a written companion to our implementation.
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