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Abstract
The computation of an initial basis is of great importance for simplex algorithms
since it determines to a large extent the number of iterations and the computational
effort needed to solve linear programs. We propose three algorithms that aim to con-
struct an initial basis that is sparse and will reduce the fill-in and computational effort
during LU factorization and updates that are utilized in modern simplex implementa-
tions. The algorithms rely on triangulation and fill-reducing ordering techniques that
are invoked prior to LU factorization. We compare the performance of the CPLEX
12.6.1 primal and dual simplex algorithms using the proposed starting bases against
CPLEX using its default crash procedure over a set of 95 large benchmarks (NETLIB,
Kennington, Mészáros, Mittelmann). The best proposed algorithm utilizes METIS
(Karypis and Kumar in SIAM J Sci Comput 20:359–392, 1998), produces remarkably
sparse starting bases, and results in 5% reduction of the geometric mean of the exe-
cution time of CPLEX’s primal simplex algorithm. Although the proposed algorithm
improves CPLEX’s primal simplex algorithm across all problem types studied in this
paper, it performs better on hard problems, i.e., the instances for which the CPLEX
default requires over 1000 s. For these problems, the proposed algorithm results in
37% reduction of the geometric mean of the execution time of CPLEX’s primal sim-
plex algorithm. The proposed algorithm also reduces the execution time of CPLEX’s
dual simplex on hard instances by 10%. For the instances that are most difficult for
CPLEX, and for which CPLEX experiences numerical difficulties as it approaches
the optimal solution, the best proposed algorithm speeds up CPLEX by more than 10
times. Finally, the proposed algorithms lead to a natural way to parallelize CPLEX
with speedups over CPLEX’s dual simplex of 1.2 and 1.3 on two and four cores,
respectively.
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1 Introduction

Since the introduction of the simplex algorithm in 1947 [9,10], Linear Programming
(LP) has been widely used in many application areas in science and engineering and
led to the genesis of the mathematical programming community [31]. Since that time,
a variety of algorithmic and computational techniques have been developed to improve
the computational performance of the simplex algorithm:

– Presolve methods that reduce the problem size [24,36,47] (for a review, see [3]).
– Scaling techniques that improve the numerical behavior of the simplex algorithm
and reduce the number of iterations required to solve LPs [8,17,45] (for a review,
see [43]).

– Pivoting rules that reduce the number of simplex iterations required to solve LPs
[19,26,44] (for a review, see [42]).

– Basis factorization and update methods that improve the numerical behavior of
the simplex algorithm and reduce its execution times [20,22,33] (for reviews, see
[15,16]).

The simplex algorithm starts with a feasible basis and uses pivot operations in order
to preserve feasibility of the basis and guarantee monotonicity of the objective value.
In some very simple cases, a basic feasible solution may be available.

The quality of the initial basis greatly affects the execution time, the number of
iterations, and the required storage of the algorithm’s data structures [5,23,34,35,40].
The aim of the crash procedures is to find an initial basis that: (i) is close to optimal,
(ii) is sparse, (iii) will reduce the subsequent fill-ins of the LU factorization, (iv) will
reduce the execution time per iteration, and (v) will reduce the number of iterations.
Crash procedures may sometimes increase the number of iterations but they may
also achieve a decrease in the time per iteration and the overall execution time. Most
crash procedures use triangulation and sparsification concepts. Considering that the
initial basis will be factorized using LU decomposition, most crash procedures form
a nearly-triangular and sparse basis that is likely to limit the number of subsequent
fill-ins.

Considerable attention has been given to the initialization of the simplex algorithm
since its conception. Most linear programming textbooks [4,7,34] present only simple
initialization procedures, such as the all-artificial and the slack-artificial basis. Twelve
different initialization techniques have been developed for general LPs; six additional
techniques have been developed for LPswith special structure.Most notably, advanced
crash procedures for initializing the simplex algorithm have been proposed in [5,6,
23,35,37]. Initialization procedures that can be applied in special cases or in modified
simplex-type algorithms have been presented in [1,25,28,32,38,39]. All these crash
procedures will be reviewed in detail in Sect. 2.

This paper proposes new methods for initializing the simplex algorithm. The over-
all goal of these methods is to exploit the concepts of triangulation and sparsification
in order to create a nearly-triangular and sparse basis that will limit the number of

123



Initialization of the simplex algorithm 493

fill-ins of the LU factors of the bases generated by the simplex algorithm. The tri-
angulation step is achieved via permutation of column singletons of the LP problem
matrix to identify a maximal submatrix that includes columns of the identity matrix.
The sparsification step relies on fill-reducing strategies that have been devised to mini-
mize themaximum potential fill-in in LU factorization procedures. These fill-reducing
strategies have been designed for factorizing symmetric matrices in the context of LU
factorization. However, for crash procedures based on these strategies, the impact on
the performance of modern simplex codes is unknown. Given the obvious relative
advantages and disadvantages of starting points that are sparse but far from optimal
versus starting points that are less sparse but nearly-optimal, we propose to investigate
the impact of these strategies computationally.We thus apply them to the nonsingleton
columns of the constraint matrix for the purpose of supplementing column singletons
with additional columns that are likely to lead to minimal fill-in in the subsequent
LU factorization and update procedures during simplex iterations. In general, find-
ing a permutation matrix that minimizes fill-in is NP-complete [46]. For this reason,
heuristics are used to find good orderings. In this paper, we experiment with three
different fill-reducing ordering methods: (i) COLAMD [13], (ii) AMD [2], and (iii)
METIS [30]. Even though these techniques have not been considered in the numerical
linear algebra of the simplex algorithm, we will demonstrate that they can provide
starting bases that, in comparison to existing implementations, are sparser and reduce
the fill-in and computational effort during LU factorization and updates for many LPs.

The remainder of this paper is organized as follows. In Sect. 2, we review proce-
dures for finding an initial basis. Section 3 presents the proposed methods. Section 4
presents results from an extensive computational study that compares the performance
of the proposed methods against the default CPLEX crash procedure. Conclusions are
provided in Sect. 5.

2 Review of crash procedures

The aim of a crash procedure is to find an initial basic solution. The starting basis may
be feasible or infeasible. In case the basis is feasible (lB ≤ xB ≤ uB , where B is the
set of the basic variables, l and u are the lower and upper bounds of the variables)
simplex algorithms can use it as a starting solution and proceed to find a solution of
the problem. On the other hand, if the initial basis is not feasible, different methods
can be used to find a basic feasible solution. Three methods are primarily used: (i) the
two-phasemethod, (ii) the big-Mmethod, and (iii) the single artificial variablemethod.
Modern implementations of the simplex algorithm use the two-phase method.

Let’s assume that the LP is in the so called computational form:

min cT x

s.t. Ax = b

l ≤ x ≤ u

where c, l, x, u ∈ R
n, b ∈ R

m, A ∈ R
m×n , and T denotes transposition. Assume that

A has full row rank and contains (implicitly) an identity matrix.
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The two-phase method adds an artificial variable to each constraint and solves an
auxiliary LP in Phase I:

min eT y

s.t. Ax + Im y = b

x, y ≥ 0

where e ∈ R
m is a vector of ones and Im is an identity matrix of size m × m. The

auxiliary LP is solved using the simplex algorithm. If y �= 0 at optimality, then the
original LP is infeasible. If y = 0, then there are two possibilities:

– y = 0 and no auxiliary variable is in the basis: in this case, we have identified a
basic feasible solution x = [xB, xN ]T , where B is the set of the basic variables
and N is the set of the nonbasic variables. The nonzero elements in x form xB ; the
remaining form xN . We can solve the original LP starting with this basic feasible
solution after eliminating the artificial variables and the corresponding columns
from the problem.

– y = 0 and at least one auxiliary variable is still in the basis: in this case, we have
identified a degenerate solution to the auxiliary problem. We remove the artificial
variables from the basis. If the lth variable is an artificial variable, examine the
lth element of the columns A−1

B A. j , j = 1, . . . , n. If the lth element of the j th
column is nonzero, then apply a change of basis with the lth entry serving as the
pivot element. The lth basic variable exits the basis and variable x j enters the basis.

If the initial basis is not feasible, LP solvers search for a feasible point during Phase
I. Hence, a crash procedure that produces feasible starting bases avoids Phase I and
may lead to fewer simplex iterations. Nonetheless, the problem of finding a feasible
point has the same complexity bound as the linear programming problem [41].

The simplest initial basis is the all-artificial basis or all-logical basis, presented
in most linear programming textbooks [4,7,34]. Artificial variables are added to all
constraints and the initial basis consists of the artificial variables. The all-artificial
basis is extremely simple and has three distinct advantages [34]: (i) its creation is
instantaneous, (ii) the LU decomposition of the starting basis (I ) is available, and (iii)
the first iterations are very fast as the operations utilize a very sparse LU factorization.
Another simple initial basis is the slack-artificial basis [5]. Initially, we add slack
and surplus variables to all inequality constraints. Then, we add artificial variables
to equality constraints and inequality constraints of the type ≥. The initial basis is
formed by the slack variables added in inequality constraints of type≤ and the artificial
variables. The slack-artificial basis is better than the all-artificial basis since it adds
fewer artificial variables and solves a smaller LP in Phase I. The techniques discussed
in this paragraph are known to lead to substantially larger numbers of iterations than
other initialization techniques.

A variant of the slack-artificial initial basis is the feasible slack basis [5]. In this
method, we add slack and surplus variables to all inequality constraints. Then, we
add artificial variables to all constraints and form an initial basis consisting of only
the artificial variables. Next, available slacks that are initially nonnegative replace the
artificial variables in the basis. Bixby [5] also proposed an approach to create a sparse
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and well-behaved basis with as few artificial variables as possible. The generated basis
includes all slack variables. The remainder of the structural variables are assigned a
preference order of inclusion in the basis; this preference order aims to place the
variables with the most freedom at the start of the list using the objective function
to break ties. Then, a heuristic procedure selects the variables that will be included
in the basis aiming to form a nearly triangular basis. Bixby’s computational results
suggested that his basis can greatly reduce the number of iterations, especially for easy
problems, but it is generally less effective for harder problems.

Carstens [6] classifies crash procedures into two classes:GAIN switch on andGAIN
switch off. In theGAINswitch off case, the objective function is ignored and the starting
basis is chosen based on sparsity grounds alone. Carstens assumes that a starting set
of basic variables is given as input to the crash procedure. It may consist entirely of
artificial variables in case there is no information about selecting basic variables. At
each iteration of these crash procedures, a pivot element ai j is selected to replace
column i of B with column j of A. If column j has c j nonzeros and row i has ri
nonzeros, Carstens discusses three different ways to select a pivot element:

– Order the nonbasic columns in order of increasing c j and choose the pivot element
ai j to be a nonzero that minimizes ri .

– Order the rows in order of increasing ri and choose the pivot element ai j to be a
nonzero that minimizes c j for j nonbasic.

– Consider the nonzeros in increasingorder of the count (ri − 1)
(
c j − 1

)
(Markowitz

criterion for reinversion [33]).

In theGAIN switch on case, a basis change ismade only if it leads to an improvement in
the objective function. Carstens recommends the use of the GAIN switch off when the
starting basis is totally or mostly artificial and the GAIN switch on when the starting
basis includes few artificial variables. Reid developed an algorithm, presented by
Gould and Reid [23], that forms an upper triangular basis. In comparison to Carsten’s
GAIN switch off algorithm, a column that is chosen late in Reid’s algorithm is required
to have a nonzero in at least one row that has not yet been pivotal. Gould and Reid [23]
proposed a tearing crash procedure that aims to find an initial basis that is as feasible as
possible and can be calculated with a reasonable computational effort. The approach
relies on the P5 algorithm of Erisman et al. [18] and solves a series of small LPs, the
solution of which forms a basis for the initial LP. Maros and Mitra [35] proposed four
crash procedures: (i) CRASH(LTSF): a lower triangular symbolic crash procedure
designed for feasibility, (ii) CRASH(ADG): an anti-degeneracy crash procedure that
deals with LPs where a starting basis may lead to a primal degenerate solution, (iii)
CRASH(ART): an artificial removal technique used after CRASH(LTSF), and (iv)
CRASH(SOR): an iterative crash procedure based on Kaczmarz’s SOR algorithm
[29]. MINOS [37] contains a crash procedure where a pivot ai j is selected if its row
contains zeros in all the columns that have so far been chosen as basic or if its column
contains zeros in all the rows that have been pivotal.

Al-Najjar and Malakooti [1] use a Phase I method that moves through the interior
of the feasible region to obtain an initial basic feasible solution. Gülpinar et al. [25]
proposed a method to construct an initial basis for LPs with embedded pure network
structures. Junior and Lins [28] estimate an optimal (or near-optimal) basis by finding
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constraints which intersect the gradient plane at minimal angles. Luh and Tsaih [32]
developed a search direction that combines the gradient direction and an internal
pointing direction with respect to the polyhedron forming the feasible region. Nabli
[38] proposed a method for constructing an initial feasible solution from an infeasible
one. This method operates without artificial variables and without any perturbation
in the objective function. Feasibility is obtained via a modification of the structure
of the simplex algorithm in the choice of the entering and leaving variables. Nabli
and Chahdoura [39] presented a crash procedure that does not involve any artificial
variables and can also detect redundant constraints and infeasibility.

The majority of the state-of-the-art crash procedures focus on finding an initial
basis that is as close to optimality as possible without aiming to create a sparse initial
basis that will limit the number of fill-ins of the LU factors of the bases generated by
the simplex algorithm. In this paper, we investigate whether it may be better–at least
in certain cases–to rely on a crash procedure that aims to choose an initial basis in a
way that will be very sparse and nearly triangular. Even though it is counter-intuitive
that it would be advantageous to use a crash procedure that ignores the objective
function, a sparse and near triangular initial basis is more likely to minimize the
subsequent fill-ins during the LU factorization of the simplex bases. All state-of-the-
art LP solvers apply such techniques to factorize bases in the course of the algorithm.
Our proposal is to utilize these techniques also for the construction of the initial basis
and investigate the computational impact of this approach on primal and dual simplex
algorithms.

3 The proposed algorithms

In this section, we present three algorithms to construct an initial basis for the simplex
algorithm. All proposed algorithms ignore the objective function and the bounds of
the variables and choose the initial basis in a way that it will be very sparse and nearly
triangular. The motivation of these algorithms is to quickly find a starting basis that
is likely to minimize subsequent fill-ins during the LU factorization of the simplex
bases. The first step in all algorithms is to identify a maximal submatrix of A that is
a diagonal. In particular, if a column singleton ai j exists, its column j is permuted to
the left and its row i is permuted to the top. Column j and row i are removed from
A. Such singleton columns must be present in the original constraint matrix A, not
just in the matrix remaining once pivoted rows and columns have been removed. The
process repeats until no more singletons exist, leading to

[
A11 A12
0 A22

]

where A11 is a diagonal matrix whose diagonal entries are greater than the smallest
acceptable pivot value τ > 0. The computational effort of this procedure depends on
the kinds of data structures used. In one implementation, the time to find all singletons
and permute them to the top left corner of the constraint matrix is reported to be
O(n + |A11| + |A12|) [13], where |A| denotes the number of nonzeros of matrix A.

123



Initialization of the simplex algorithm 497

Fig. 1 Example matrix and its elimination graph

If the sum of the number of ≤ type of constraints and the singleton columns in the
original LP problem is m, initialization stops here with a basis consisting of all slack
variables and/or variables with singleton columns.

Once singletons are removed, the remaining matrix A22 is ordered with a fill-
reducing ordering method. The goal of this procedure is to find a column permutation
of A22 so that subsequent factorization results in the least possible fill-in in A22.
The output of this procedure is a column permutation vector. We use this column
permutation vector to select the initial basis for the simplex algorithm. The initial
basis will be formed by the s singleton columns (0 ≤ s ≤ n, if s > m we select the
first m singletons as the initial basis) and the first m − s columns from the column
permutation vector.

The column preordering is based solely on the nonzero pattern of A22. Some meth-
ods order matrix A without forming AT A, while others form the explicit pattern
of AT A. The nonzero pattern of the symmetric n2 × n2 matrix AT

22A22 (where n2
is the number of columns of matrix A22, n2 ≤ n) can be represented by a graph
G0 = (

V 0, E0
)
, where V 0 = {1, . . . , n2} are the nodes and E0 are the edges of the

graph. An edge (i, j) ∈ E0 if and only if ai j �= 0 and i �= j . Since the matrix is sym-
metric, G0 is undirected. Figure 1 illustrates an example matrix and its elimination
graph G0.

If A22 contains a dense (or nearly dense) row or column, the Markowitz criterion
will not chose this row or column until the final stages of the elimination, thus limiting
fill-in, which is consistent with our intent to produce a sparse starting basis.

As alreadymentioned, because the problem of obtaining an orderingwithminimum
fill-in is NP-complete, heuristics are applied for choosing the pivot columns in LU
factorization. In each factorization step, COLMMD [21] selects as pivot the column
that minimizes a loose upper bound on the external row degree. AMD [2] is based
on a bound on the external row degree that is tighter than the COLMMD bound. The
Markowitz rule [33] selects as pivot the element ai j that minimizes the product of
the degrees of row i and column j . COLAMD [13] uses an initial COLMMD metric
and an AMD metric during the elimination phase. METIS [30] finds a fill-reducing
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ordering for a symmetric sparse matrix via recursive nested dissection. Amestoy et
al. [2] performed a computational study in the context of minimum degree orderings
for sparse Cholesky factorization and found that AMD is superior to the COLMMD
approximation. In addition, Davis et al. [13] compared the performance of COLAMD,
COLMMD, and AMD. Computational results showed that, for square nonsymmetric
matrices, COLAMD is much faster and provides better orderings than COLMMD.
For rectangular matrices, COLAMD is faster than COLMMD and AMD and finds
orderings of comparable quality. Hence, we selected COLAMD, AMD, and METIS
to create variants of our method. COLAMD orders matrix A without forming AT A,
while AMD andMETIS need to form the explicit pattern of AT A. The asymptotic run
times of these orderingmethods have no tight known bounds in terms of quantities that
can be readily calculated beforehand [11]. However, experimental results presented in
[12] showed that, in most cases, COLAMD and AMD take time roughly proportional
to the number of nonzeros in A and AT A, respectively.

All algorithms select the same singleton columns to include in the initial basis. Their
only difference is the ordering method. Therefore, the three variants of the proposed
method are:

– Algorithm 1 applies COLAMD.
– Algorithm 2 applies AMD.
– Algorithm 3 applies METIS.

We also experimented with using the Markowitz [33] criterion to select the basis
but this approach leads to more simplex iterations. These results are consistent with
the results of Davis et al. [12], who also considered the Markowitz criterion prior to
the LU factorization in order to permute a matrix and reduce the worst-case fill-in.
They report that the Markowitz criterion gave much worse orderings than COLAMD.
In our case, these worse orderings resulted in more simplex iterations.

The input to all three algorithms is the constraint matrix A and the output is the
basic list B. The basic steps of the aforementioned algorithms can be described as
follows:

Step 1. Set C = ∅, R = ∅ and Q = ∅.
Step 2. Find the singletons in the constraint matrix A. A singleton is a column j

with a single nonzero ai j whose magnitude is larger than a given threshold
τ . We set τ = 20 (m + n) ε max j

∥
∥A∗ j

∥
∥
2, where ε is the machine roundoff

and max j
∥∥A∗ j

∥∥
2 is the largest 2-norm of any column of A. If a singleton ai j

exists and i /∈ R, add column j to the setC and row i to the set R. If |C | = m,
go to Step 4; else, repeat this step until there are no more singletons.

Step 3. Apply COLAMD (for Algorithm 1), AMD (for Algorithm 2), or METIS (for
Algorithm 3) to submatrix A22 (A22 is a submatrix of A by deleting rows
in A that are in set C and columns that are in set R). The resulting column
permutation vector is stored in set Q.

Step 4. The initial basic list is B formulated from the variables in set C and the first
m − |C | variables in set Q.

Note that we can create additional variants for each of the proposed methods if we
permute the rows in R and columns in C of the constraint matrix A to the top left
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Fig. 2 Sparsity pattern of the constraint matrix A and the initial basis using Algorithms 1–3 for problem
pilot87 of the NETLIB set

corner. A preliminary computational study revealed that these permutations result in
more iterations and slower execution times of the simplex algorithm. Hence, these
variants will not be discussed further.

The proposed algorithms do not guarantee that the initial matrix will be nonsingular
since the ordering methods that are used (AMD, COLAMD,METIS) do not guarantee
that the matrices generated by their orderings will be nonsingular. In fact, we were
able to generate some trivial instances for which the ordering methods generate an
ordering that does make our algorithm produce a singular initial matrix. However, the
proposed method did not generate a singular initial matrix for any of the benchmark
problems we experimented with (from NETLIB, Kennington, Mészáros, Mittelmann
benchmark libraries).

Figures 2 and 3 present the sparsity pattern of the constraint matrix A and the
initial basis using Algorithms 1–3 for problems pilot87 and qap15 from NETLIB,
respectively. All algorithms form nearly-triangular initial bases.

4 Computational study

The aim of this computational study is to investigate the performance of the simplex
algorithm in conjunction with the proposed crash procedures. We give the initial bases
generated by all three algorithms as input to the CPLEX solver and compare their
performance against the CPLEX default crash procedure. We do this using both the
primal and the dual simplex algorithm.
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(a) Constraint matrix A
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(c) Initial basis from Algo-
rithm 2
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(d) Initial basis for Algo-
rithm 3

Fig. 3 Sparsity pattern of the constraint matrix A and the initial basis using Algorithms 1–3 for problem
qap15 of the NETLIB set

All computations were performed on an Intel Xeon CPU E5-2660 v3 with 128 GB
of main memory, a clock of 2.6 GHz, an L1 code cache of 32 KB per core, an L1 data
cache of 32 KB per core, an L2 cache of 256 KB per core, and an L3 cache of 24 MB,
running under Centos 7 64-bit. We considered a set of 150 medium-sized and large
benchmark problems (NETLIB, Kennington, Mészáros, Mittelmann) in preliminary
runs. Then, we eliminated the trivial problems, i.e., instances solved in less than 1 s
with all the algorithms considered in this paper when CPLEX presolve is disabled
(“preprocessing.presolve” option is set to 0). The final set of instances that we used
in this computational study includes 95 benchmark problems. On average, 6% of the
variables in the constraint matrix are singletons while 10% of the variables in the
initial basis are singletons. Table S1 in the Online Supplement presents the number
of constraints, variables, and nonzeros for each of the benchmark problems. We used
CPLEX to presolve all instances and exported the MPS files. We then generated
the initial bases for each presolved problem using the three algorithms and stored
them in BAS files (MPS basis files, known as BAS files, that contain the information
needed to define an initial basis). We gave the generated BAS files as input to CPLEX
and compared the performance of the solver against that of the CPLEX default crash
procedures.We did this comparison for both the primal and the dual simplex algorithm.
We used default values for all algorithmic options of CPLEX. An execution time limit
of 15,000 s was imposed on all runs.

In the tables and figures below, the following abbreviations are used: (i) Time: CPU
time to solve a problemwith CPLEX, and (ii) Tit: total iterations. The time to construct
an initial basis with the proposed algorithms is negligible in comparison to the total
time needed to solve the instances. Algorithm 1 (based on COLAMD) is faster than
Algorithms 2 (based on AMD) and 3 (based on METIS).
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Table 1 Shifted geometric times and iterations for the primal simplex algorithm using shifted geometric
mean

Algorithm Test set Time Tit

CPLEX using Algorithm 1 All problemsa 56 41,921

> 1000 sb 3334 308,677

CPLEX using Algorithm 2 All problems 58 41,639

> 1000 s 3626 348,100

CPLEX using Algorithm 3 All problems 55 40,485

> 1000 s 2885 300,005

CPLEX using default crash procedure All problems 58 43,156

> 1000 s 4606 348,349

a95 problems in total
b13 problems for which CPLEX with default crash needs more than 1000 s to solve

Table 1 presents the average value (shifted geometricmean over the entire collection
of test problems) of Time and Tit with four different initialization algorithms followed
by the application of the primal CPLEX routine to the presolved problems. For the
nonnegative numbers a1, . . . , ak ∈ R+ and a shift s ∈ R+, the average is defined by

γs (a1, . . . , ak) =
(

k∏

i=1

(ai + s)

) 1
k

− s

We use a shift of 10 for the execution time and 1000 for the number of iterations in
order to decrease the influence of the easy instances in the mean values.

Tables S2–S5 in the Online Supplement present the detailed results for each prob-
lem and algorithm combination. As seen in Tables 1 and S2–S5, Algorithm 3, based
on METIS, performs better than all the other proposed methods on average. All the
proposed methods require less CPU time and fewer iterations than the default CPLEX
crash procedure. Primal CPLEX using Algorithm 3 results in 5% reduction of the
geometric mean of the execution time of CPLEX’s primal simplex algorithm. More-
over, the proposed methods are significantly faster on instances for which the CPLEX
default requires over 1000 s (13 problems). For these problems, primal CPLEX using
Algorithm 3 is 37% faster than primal CPLEX using its default crash procedure.

Figures 4 and 5 present performance profiles [14] based on the execution time
and the number of iterations, respectively, of the primal simplex algorithm using the
three proposed algorithms and the default crash procedure. Performance profiles are
displayed in logarithmic scale with base 2. Algorithm 3, based on METIS, performs
better than the other proposed methods and the default crash procedure. In particular,
Algorithm 3 is better than the other methods in the interval [1.1, 7]. Moreover, Algo-
rithm 3 is faster than the CPLEX default crash procedure on 64 out of 95 problems
and appears dominant in the performance profile. Algorithm 3 performs 4% fewer
Phase I iterations, 2% fewer Phase II iterations, and 6% fewer total iterations than the
CPLEX crash procedure. The proposed algorithm performs fewer Phase I iterations
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Fig. 4 Performance profiles comparing the three algorithms and default crash procedure based on the
execution time for the primal simplex
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Fig. 5 Performance profiles comparing the three algorithms and default crash procedure based on the
number of iterations for the primal simplex algorithm

on 51 instances, fewer Phase II iterations on 48 instances, and fewer total iterations on
47 instances. Algorithm 3 finds a better starting solution (closer either to feasibility
or optimality) than the CPLEX crash procedure on 61 problems. Additionally, Algo-
rithm 3 finds the optimal solution on one problem, a basic feasible solution on six
problems and a nearly basic feasible solution (the percentage of Phase I iterations to
total iterations is less than 10%) on 18 problems, while the CPLEX crash procedure
finds a basic feasible solution on one problem and a nearly basic feasible solution on
27 problems. In addition, Algorithm 3 constructs an initial basis that is, on average,
four times sparser than that of the CPLEX crash procedure.
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Table 2 Shifted geometric means of times and iterations for the dual simplex algorithm

Algorithm Test set Time Tit

CPLEX using Algorithm 1 All problemsa 51 27,854

> 1000 sb 8674 333,956

CPLEX using Algorithm 2 All problems 50 26,901

> 1000 s 8782 327,671

CPLEX using Algorithm 3 All problems 50 27,281

> 1000 s 7074 306,132

CPLEX using default crash procedure All problems 48 24,345

> 1000 s 7844 291,366

a95 problems in total
b8 problems for which CPLEX with default crash needs more than 1000 s to solve

Although the performance of Algorithm 3 is consistent on both easy and hard
instances, it results in significant reductions when solving hard instances. The per-
formance of CPLEX with its default crash procedure deteriorates for large and hard
problems. More specifically, there are some problems, e.g., neos2, ns1687037, nug08-
3rd, and nug20, where CPLEX experiences numerical difficulties as it approaches
the optimal solution. These difficulties caused CPLEX to change the value of the
Markowitz tolerance and resort to new Phase I iterations in order to restore feasibil-
ity. CPLEX may start again from an infeasible solution more than once during the
solution of a problem, e.g., four and six times for the ns1687037 and nug20 instances,
respectively. CPLEX also experienced numerical issues when starting from a solu-
tion generated by one of the proposed algorithms. In all such cases, however, CPLEX
needed only a few iterations to restore a feasible solution. Therefore, the proposed
methods seem to have the ability to avoid numerical issues encountered by the starting
points obtained through the current default initialization algorithms in CPLEX.

Table 2 presents a summary of the results for the dual simplex algorithm. Detailed
results with all problem and algorithm combinations are provided in Tables S6–S9
in the Online Supplement. In this case, CPLEX’s dual simplex algorithm using the
default crash procedure is 5% faster than CPLEX’s dual simplex algorithm using
Algorithm 3. However, Algorithm 3 is significantly better on instances for which the
CPLEX default requires over 1000 s (8 problems). For these instances, dual CPLEX
using Algorithm 3 is 10% faster than dual CPLEX using its default crash procedure.
In addition, Algorithm 3 is performing better than Algorithms 1 and 2.

Figures 6 and 7 present performance profiles based on the execution time and
the number of iterations, respectively, of the dual simplex algorithm using the three
proposed algorithms and the default crash procedure. CPLEX default crash procedure
has the highest probability of being the fastest solver for values of τ in the interval
[0.5, 7]. CPLEX using its default crash procedure is 5% faster than CPLEX using
Algorithm 3. The reduction to the execution time that the proposed algorithms offer
is more pronounced on hard instances. For these problems, CPLEX using Algorithm
3 is 10% faster than the default CPLEX crash procedure.
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Fig. 6 Performance profiles comparing the three algorithms and default crash procedure based on the
execution time for the dual simplex algorithm
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Fig. 7 Performance profiles comparing the three algorithms and default crash procedure based on the
number of iterations for the dual simplex algorithm

Using dual simplex, the CPLEX crash procedure is faster than Algorithm 3 on 52
out of 95 instances. CPLEX crash procedure performs 52% more Phase I iterations,
1%more Phase II iterations, and 11%more total iterations in comparison to Algorithm
3. The CPLEX crash procedure also finds a feasible solution on the majority of the
instances. Algorithm 3 performs fewer Phase I iterations on 28 instances, fewer Phase
II iterations on 39 instances, and fewer total iterations on 33 instances. For the hard
instances alone, Algorithm 3 results in great reductions compared to the CPLEX dual
simplex algorithm. Similar to the primal simplex algorithm, the performance of the
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Table 3 Average performance of the best proposed method and the best CPLEX crash procedure

Algorithm Test set Time Tit Density (%)

Primal CPLEX using
Algorithm 3

All problemsa 838 148,835 0.11

> 1000 sb 7378 597,926 0.01

Dual CPLEX using default
crash procedure

All problems 903 90.884 0.50

> 1000 s 9825 442,275 0.01

Speedup of the best proposed
method over the best
CPLEX crash procedure

All problems 7% −39% 73

> 1000 s 25% −26% 0

a95 problems in total
b8 problems for which CPLEX with default crash needs more than 1000 s to solve

Table 4 Shifted geometric means of wall-clock times from runs on multiple cores

Algorithm Time

Dual CPLEX using default crash procedure 48

Best of primal and dual CPLEX using Algorithm 3 40

Best of primal and dual CPLEX using default crash procedure or Algorithm 3 37

CPLEX dual simplex algorithm with the CPLEX default crash procedure deteriorates
for large and hard problems.

7
Table 3 presents the average performance of the primal simplex algorithm using

Algorithm 3 compared to the performance of the dual simplex algorithm using
CPLEX’s default crash procedure. Performance is measured in terms of execution
time, number of iterations, and density of the generated basis. CPLEX’s primal sim-
plex algorithm initialized with Algorithm 3 is 7% faster than the default CPLEX
algorithm. This CPU time reduction comes along with a 73% reduction in the density
of the generated initial bases. For the instances for which the dual simplex algorithm
with CPLEX’s default crash procedure needs more than 1000 s to solve, CPLEX’s
primal simplex algorithm using Algorithm 3 is 25% faster than the default CPLEX
algorithm. Even though CPLEX with Algorithm 3 performs more iterations than the
default CPLEX algorithm, Algorithm 3 spends significantly less time per iteration
than CPLEX with the default crash procedure, for both primal and dual simplex.

The above computational results suggest there are many problems for which the
proposed algorithms outperform the CPLEX default initialization scheme, while the
latter is still useful, especially for easier problems. This observation suggests an oppor-
tunity to combine all these algorithms in a speculative parallelization approach on
computing equipment with a small number of cores. CPLEX has no parallel simplex
facility. Hence, we will compute parallelization speedups with respect to running the
dual CPLEX algorithm on a single core. Table 4 presents the shifted geometric means
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of the execution times when using multiple cores, each core running CPLEX with a
different variant of the crash procedure in a task-dependent fashion. The default dual
CPLEX using the default CPLEX crash procedure (running on one core) needs 48 s
on average to solve the problems in our testset. Running the primal and dual CPLEX
using Algorithm 3 on two cores and taking the best performance of each variant results
in a mean speedup of 1.2 over CPLEX’s dual simplex algorithm. The execution of the
primal and dual CPLEX using the default crash procedure and Algorithm 3 (running
on four cores) results in a mean speedup of 1.3 over CPLEX’s dual simplex algorithm.
These speedups are comparable to those of state-of-the-art parallel simplex solvers
for a similar number of cores [27].

5 Conclusions

We presented three algorithms that construct a nearly-triangular and sparse initial
basis for the simplex algorithm. The initial basis is artificial-free and includes as many
structural variables as possible. The aim of the proposed methods is to reduce the
subsequent fill-ins of the LU factorization, the number of iterations, and the com-
putational effort at each iteration. We experimented with various ordering methods
in order to create a sparse nearly-triangular initial basis for the simplex algorithm.
Using a collection of 95 benchmark LPs, we found that the best way to speed up the
primal and dual simplex algorithms for CPLEX is to utilize Algorithm 3, which forms
a starting basis using all available column singletons plus the columns obtained from
the application of METIS to the remainder of the LP matrix.

Algorithm 3 results in 5% average reduction of the execution time of CPLEX’s
primal simplex algorithm. Although the proposed algorithm reduces CPLEX’s execu-
tion time on the majority of instances, it is significantly faster than the CPLEX default
crash procedure on hard instances. For the hard instances (instances that CPLEX needs
more than 1000 s to solve), Algorithm 3 results in 37% average reduction of the exe-
cution time of CPLEX’s primal simplex algorithm. CPLEX’s dual simplex algorithm
with its default crash procedure is 5% faster than CPLEX’s dual simplex algorithm
using Algorithm 3. Yet, CPLEX using Algorithm 3 is 10% faster than CPLEX with
its default crash procedure on instances for which CPLEX needs more than 1000 s to
solve.

Finally, the proposed algorithms lend themselves to speculative parallelization of
the simplex algorithm. With respect to the dual CPLEX with default initialization, the
proposed algorithms lead to speedups of 1.2 and 1.3 on two and four cores, respectively.

References

1. Al-Najjar, C., Malakooti, B.: Hybrid-LP: finding advanced starting points for simplex, and pivoting
LP methods. Comput. Oper. Res. 38, 427–434 (2011)

2. Amestoy, P.R., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algorithm. SIAM J.
Matrix Anal. Appl. 17, 886–905 (1996)

3. Andersen, E.D., Andersen, K.D.: Presolving in linear programming. Math. Program. 71, 221–245
(1995)

123



Initialization of the simplex algorithm 507

4. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scientific, Boston (1997)
5. Bixby, R.E.: Implementing the simplex method: the initial basis. ORSA J. Comput. 4, 267–284 (1992)
6. Carstens,D.M.:Crashing techniques. In:Orchard-Hays,W. (ed.)AdvancedLinear-ProgrammingCom-

puting Techniques, pp. 131–139. McGraw-Hill, New York (1968)
7. Chvátal, V.: Linear Programming. W. H. Freeman, New York (1983)
8. Curtis, A.R., Reid, J.K.: On the automatic scaling of matrices for Gaussian elimination. J. Inst. Math.

Appl. 10, 118–124 (1972)
9. Dantzig, G.B.: Programming in a linear structure. Econometrica 17, 73–74 (1949)

10. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)
11. Davis, T.A.: Algorithm 915, SuiteSparseQR: multifrontal multithreaded rank-revealing sparse QR

factorization. ACM Trans. Math. Softw. 38, 8–29 (2011)
12. Davis, T.A., Gilbert, J.R., Larimore, S.I., Ng, E.G.: A column approximate minimum degree ordering

algorithm. ACM Trans. Math. Softw. 30, 353–376 (2004)
13. Davis, T.A., Gilbert, J.R., Larimore, S.I., Ng, E.G.: Algorithm 836: COLAMD, a column approximate

minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 377–380 (2004)
14. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-

gram. 91, 201–213 (2002)
15. Elble, J.M., Sahinidis, N.V.: A review of LU factorization in the simplex algorithm. Int. J. Math. Oper.

Res. 4, 319–365 (2012)
16. Elble, J.M., Sahinidis, N.V.: A review of the LU update in the simplex algorithm. Int. J. Math. Oper.

Res. 4, 366–399 (2012)
17. Elble, J.M., Sahinidis, N.V.: Scaling linear optimization problems prior to application of the simplex

method. Comput. Optim. Appl. 52, 345–371 (2012)
18. Erisman, A.M., Grimes, R.G., Lewis, J.G., Poole Jr., W.G.: A structurally stable modification of

Hellerman–Rarick’s P4 algorithm for reordering unsymmetric sparse matrices. SIAM J. Numer. Anal.
22, 369–385 (1985)

19. Forrest, J.J., Goldfarb, D.: Steepest-edge simplex algorithms for linear programming. Math. Program.
57, 341–374 (1992)

20. Forrest, J.J.H., Tomlin, J.A.: Updated triangular factors of the basis to maintain sparsity in the product
form simplex method. Math. Program. 2, 263–278 (1972)

21. Gilbert, J.R., Moler, C.B., Schreiber, R.: Sparse matrices in MATLAB: design and implementation.
SIAM J. Matrix Anal. Appl. 13, 333–356 (1992)

22. Goldfarb, D.: On the Bartels–Golub decomposition for linear programming bases. Math. Program. 13,
272–279 (1977)

23. Gould, N.I.M., Reid, J.K.: New crash procedures for large systems of linear constraints.Math. Program.
45, 475–501 (1989)

24. Gould, N.I.M., Toint, P.L.: Preprocessing for quadratic programming. Math. Program. 100, 95–132
(2004)

25. Gülpinar, N., Mitra, G., Maros, I.: Creating advanced bases for large scale linear programs exploiting
embedded network structure. Comput. Optim. Appl. 21, 71–93 (2002)

26. Harris, P.M.J.: Pivot selection methods of the Devex LP code. Math. Program. 5, 1–28 (1973)
27. Huangfu, Q., Hall, J.: Parallelizing the dual revised simplex method. Math. Program. Comput. 10,

119–142 (2018)
28. Junior, H.V., Lins, M.P.E.: An improved initial basis for the simplex algorithm. Comput. Oper. Res.

32, 1983–1993 (2005)
29. Kaczmarz, S.: Angenäherte auflösung von systemen linearer gleichungen. Bull. Int. Acad. Pol. Sci.

Lett. 35, 355–357 (1937)
30. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs.

SIAM J. Sci. Comput. 20, 359–392 (1998)
31. Lenstra, J.K., Rinnoy Kan, A.H.G., Schrijver, A. (eds.): History of Mathematical Programming. CWI

North Holland, Amsterdam (1991)
32. Luh, H., Tsaih, R.: An efficient search direction for linear programming problems. Comput. Oper. Res.

29, 195–203 (2002)
33. Markowitz, H.M.: The elimination form of the inverse and its application to linear programming.

Manag. Sci. 3, 255–269 (1957). (Originally at The RAND Corporation, Research Memorandum RM-
1452, 1955)

123



508 N. Ploskas et al.

34. Maros, I.: Computational Techniques of the Simplex Method. Kluwer Academic Publishers, Boston
(2003)

35. Maros, I., Mitra, G.: Strategies for creating advanced bases for large-scale linear programming prob-
lems. INFORMS J. Comput. 10, 248–260 (1998)

36. Mészáros, C., Suhl, U.H.: Advanced preprocessing techniques for linear and quadratic programming.
OR Spectr. 25, 575–595 (2003)

37. Murtagh, B.A., Saunders,M.A.:MINOS 5.1User’s Guide. Technical report, Department of Operations
Research, Stanford University, Stanford, CA (1987)

38. Nabli, H.: An overview on the simplex algorithm. Appl. Math. Comput. 210, 479–489 (2009)
39. Nabli, H., Chahdoura, S.: Algebraic simplex initialization combined with the nonfeasible basis meth-

ods. Eur. J. Oper. Res. 245, 384–391 (2015)
40. Pan, P.Q.: Linear Programming Computation. Springer, Berlin (2014)
41. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover Pub-

lications, Mineola (1998)
42. Ploskas, N., Samaras, N.: GPU accelerated pivoting rules for the simplex algorithm. J. Syst. Softw. 96,

1–9 (2014)
43. Ploskas, N., Samaras, N.: A computational comparison of scaling techniques for linear optimization

problems on a graphical processing unit. Int. J. Comput. Math. 92, 319–336 (2015)
44. Terlaky, T., Zhang, S.: Pivot rules for linear programming: a survey on recent theoretical developments.

Ann. Oper. Res. 46, 203–233 (1993)
45. Tomlin, J.A.: An accuracy test for updating triangular factors.Math. Program. Study 4, 142–145 (1975)
46. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebr. Discrete Methods

2, 77–79 (1981)
47. Ye, Y.: Eliminating columns in the simplex method for linear-programming. J. Optim. Theory Appl.

63, 69–77 (1989)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Nikolaos Ploskas1 · Nikolaos V. Sahinidis2 · Nikolaos Samaras3

B Nikolaos V. Sahinidis
sahinidis@cmu.edu

Nikolaos Ploskas
nploskas@uowm.gr

Nikolaos Samaras
samaras@uom.gr

1 Department of Electrical and Computer Engineering, University of Western Macedonia, 50100
Kozani, Greece

2 Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

3 Department of Applied Informatics, University of Macedonia, 54636 Thessaloniki, Greece

123


	A triangulation and fill-reducing initialization procedure for the simplex algorithm
	Abstract
	1 Introduction
	2 Review of crash procedures
	3 The proposed algorithms
	4 Computational study
	5 Conclusions
	References




