Mathematical Programming Computation, Volume 2, Number 1 / March 2010

Font Size:  Small  Medium  Large

A new relaxation framework for quadratic assignment problems based on matrix splitting

Jiming Peng, Hans Mittelmann, Xiaoxue Li


Quadratic assignment problems (QAPs) are known to be among the hardest discrete optimization problems. Recent study shows that even obtaining a strong lower bound for QAPs is a computational challenge. In this paper, we first discuss how to construct new simple convex relaxations of QAPs based on various matrix splitting schemes. Then we introduce the so-called symmetric mappings that can be used to derive strong cuts for the proposed relaxation model. We show that the bounds based on the new models are comparable to some strong bounds in the literature. Promising experimental results based on the new relaxations are reported.

Full Text: PDF

mpc footer
© MPS 2008-2016