
Math. Prog. Comp. (2009) 1:43–67
DOI 10.1007/s12532-009-0002-8

FULL LENGTH PAPER

Blossom V: a new implementation of a minimum cost
perfect matching algorithm

Vladimir Kolmogorov

Received: 9 September 2008 / Accepted: 24 March 2009 / Published online: 21 April 2009
© Springer and Mathematical Programming Society 2009

Abstract We describe a new implementation of the Edmonds’s algorithm for
computing a perfect matching of minimum cost, to which we refer as Blossom V.
A key feature of our implementation is a combination of two ideas that were shown
to be effective for this problem: the “variable dual updates” approach of Cook and
Rohe (INFORMS J Comput 11(2):138–148, 1999) and the use of priority queues. We
achieve this by maintaining an auxiliary graph whose nodes correspond to alternating
trees in the Edmonds’s algorithm. While our use of priority queues does not improve
the worst-case complexity, it appears to lead to an efficient technique. In the majority
of our tests Blossom V outperformed previous implementations of Cook and Rohe
(INFORMS J Comput 11(2):138–148, 1999) and Mehlhorn and Schäfer (J Algorith-
mics Exp (JEA) 7:4, 2002), sometimes by an order of magnitude. We also show that
for large VLSI instances it is beneficial to update duals by solving a linear program,
contrary to a conjecture by Cook and Rohe.

Mathematics Subject Classification (2000) 68R10

1 Introduction

We consider the problem of computing a perfect matching of minimum cost in an
undirected weighted graph. (A perfect matching is a subset of edges such that each
node in the graph is met by exactly one edge in the subset).

In 1965, Edmonds [11,12] invented the famous blossom algorithm that solves this
problem in polynomial time. A straightforward implementation of Edmonds’s algo-
rithm requires O(n2m) time, where n is the number of nodes in the graph and m is the

V. Kolmogorov (B)
University College London, London, UK
e-mail: v.kolmogorov@cs.ucl.ac.uk

123

44 V. Kolmogorov

number of edges. Since then, the worst-case complexity of the blossom algorithm has
been steadily improving. Both Gabow [16] and Lawler [22] achieved a running time
of O(n3), Galil et al. [28] improved it to O(nm log n), which was further improved
to O(n(m log log logmax{m/n,2} n + n log n)) by Gabow et al. [18]. The current best
known result in terms of n and m is O(n(m + n log n)) due to Gabow [17]. Somewhat
better asymptotic running times are known for integral edge weights (see e.g. [8] for
a survey).

There is also a long history of computer implementations of the blossom algorithm,
starting with the Blossom I code of Edmonds et al. [13]. For several years, the Blossom
IV code of Cook and Rohe [8] was considered as the fastest available implementation
of the blossom algorithm (see [5,8] for comparisons with earlier codes). The main
feature of Blossom IV was a particular strategy for updating dual variables called the
variable dual updates (or the variable δ) approach [8].

Blossom IV and earlier codes used rather simple data structures; in particular, they
did not exploit priority queues for finding an edge with the smallest slack. A natural
question is whether priority queues can improve a practical implementation, given
that they are heavily used for improving the worst-case complexity. An affirmative
answer was given by Mehlhorn and Schäfer [24] who developed an implementation
that runs in O(nm log n) and showed an improvement over the Blossom IV code. The
implementation of [24] follows the algorithm of Galil et al. [28], and uses concate-
nable priority queues. This algorithm uses a fixed δ approach, which is essential for
achieving the O(nm log n) bound.

In this paper we describe a new implementation of Edmonds’s algorithm to which
we refer as Blossom V. Our motivation was to incorporate both the variable δ approach
and the use of priority queues, which were showed to be effective in practice in [8]
and [24], respectively. A key feature of our implementation is the maintenance of an
auxiliary graph whose nodes correspond to alternating trees in the Edmonds’s algo-
rithm. The edges of this graph store pointers to the corresponding priority queues.
Our use of priority queues does not improve over the worst-case complexity of Blos-
som IV (which we believe to be O(n3m)), but it appears to be quite effective in
practice.

The rest of the paper is organized as follows. In Sect. 2 we give an overview of
the blossom algorithm and the variable δ approach. In Sect. 3 we describe details of
our implementation. Computational results are presented in Sect. 4. Finally, Sect. 5
presents conclusions and discusses future work.

2 Background: Edmonds’s blossom algorithm

Let G = (V, E, c) be an undirected weighted graph. A matching is a subset of edges
E ′ ⊆ E such that each node in V has at most one incident edge in E ′. Matching
E ′ is perfect if each node in V has exactly one incident edge in E ′. The goal is it
compute a perfect matching E ′ of minimum cost c(E ′). (As usual, if A is a subset
of B and z is a vector in BR, then z(A) denotes

∑
i∈A zi). We assume that a perfect

matching in G exists. Matchings E ′ ⊆ E will be represented by incidence vectors
x ∈ {0, 1}E .

123

Blossom V: a new implementation of a minimum cost perfect matching algorithm 45

LP formulation The blossom algorithm is based on the following linear program-
ming formulation of the minimum cost perfect matching problem. For a subset S ⊆ V ,
let δ(S) be the set of boundary edges of S, i.e. δ(S) = {(u, v) ∈ E |u ∈ S, v ∈ V − S}.
For a single node v ∈ V we denote δ(v) = δ({v}). Let O be the set of all subsets of
V of odd cardinality containing at least three nodes. Edmond’s LP is then given by

PRIMAL

min
∑
e∈E

cexe (1a)

subject to x(δ(v)) = 1 ∀ v ∈ V (1b)

x(δ(S)) ≥ 1 ∀ S ∈ O (1c)

xe ≥ 0 ∀ e ∈ E (1d)

DUAL

max
∑
v∈V

yv + ∑
S∈O yS (2a)

subject to slack(e) ≥ 0 ∀ e ∈ E (2b)

yS ≥ 0 ∀ S ∈ O (2c)

where slack(e) in Eq. (2b) denotes the reduced cost of edge e = (u, v):

slack(e) = ce − yu − yv −
∑

S∈O : e∈δ(S)

yS

Edges e with zero slack are called tight.
Edmond’s algorithm maintains a feasible dual vector y and a (non-feasible) integer-

valued primal vector x which corresponds to a matching. These vectors are updated
so that the cardinality of matching x increases gradually until x becomes a perfect
matching. At this point the complementary slackness conditions are satisfied:

slack(e) > 0 ⇒ xe = 0 (3a)

yS > 0 ⇒ x(δ(S)) = 1 (3b)

and thus x gives a perfect matching of minimum cost.
One potential concern is that the dual problem has an exponential number of vari-

ables yS , S ∈ O. However, this does not cause problems since at any moment there
are at most O(n) subsets S ∈ O with non-zero variable yS . These subsets are called
blossoms.

A blossom can be defined recursively as follows: it is a cycle containing an odd
number of “pseudonodes”, where a pseudonode is either a node in V or another blos-
som. Two consecutive pseudonodes in the cycle are connected via an edge called a

123

46 V. Kolmogorov

v

v ++

++ ++

++

++

++

(c)(b)(a)

Fig. 1 Basic notions. Solid lines show blossom forming edges or edges in a tree. Double solid lines show
edges in the current matching. Other edges of the graph are not shown. a Two valid blossoms. b Canonical
matchings obtained after node v inside the blossom is matched to an exterior node. c A possible intermediate
state of the algorithm. There are two alternating trees (their unmatched roots are at the top) and two free
nodes

blossom-forming edge. Examples of blossoms are shown in Fig. 1a. If a pseudonode
is contained in some blossom it is called interior, otherwise it is exterior.

The algorithm treats blossoms as ordinary nodes. This is possible due to the
following key property: if we managed to match an edge coming out of one of the
nodes inside the blossom, then we can recursively match the remaining even number
of nodes to each other using only blossom-forming edges (see Fig. 1b). Blossom-
forming edges are always tight, which ensures property (3a). Note, changing the dual
variable yv for blossom v (or changing other dual variables outside the blossom) does
not affect the slacks of edges inside the blossom.

It should be said that there is one important difference between a blossom v and
an ordinary node u ∈ V : variable yv must be non-negative, while yu can take any
sign. Because of this blossoms sometimes have to be expanded to prevent yv from
becoming negative.

2.1 Overview of the algorithm

The algorithm works only with exterior pseudonodes; pseudonodes and edges inside
blossoms are not considered (unless the blossom is expanded). From now on, we will
refer to exterior pseudonodes as just “nodes”, unless stated otherwise.

Each node v has a label l(v) ∈ {+,−, ∅}. Nodes v with label l(v) = ∅ are called
free nodes; they are always matched to another free node via a tight edge. If l(v) (= ∅,
then v belongs to an alternating tree (Fig. 1c). If l(v) = − then the parent of v is a “+”
node, to which v is connected via a tight unmatched edge e (i.e. xe = 0). If l(v) = +
then the parent of v is a “−” node, to which v is connected via a tight matched edge
e (xe = 1). The only exception is the root of the tree, which has the label “+” but
is unmatched. Note, “+” nodes may have several children (or none), but a “−” node
always has one child. Clearly, the number of trees equals the number of unmatched
nodes in the graph.

123

Blossom V: a new implementation of a minimum cost perfect matching algorithm 47

++ ++

++ ++

++++

++ ++

++

++

++ ++

++

++

++

++++

++ ++

++ ++

+++

++

+++

++

++

(b)(a)

(d)(c)

Fig. 2 Four possible operations performed during the primal updates. Dashed lines denote tight edges
which are not in any tree. In c the shrunk blossom becomes the root of the tree, since the original root is
subsumed. The EXPAND operation for blossom v is allowed only if l(v) = − and yv = 0. a GROW,
b AUGMENT, c SHRINK, d EXPAND

The algorithm iterates between “primal updates” and “dual updates”, which are
described below.

2.2 Primal updates

During primal updates the algorithm attempts to find a matching x of higher cardinal-
ity that uses only tight edges. (Dual variables y are kept constant). Four operations are
used:

• GROW: If edge (u, v) is tight, l(u) = + and l(v) = ∅ then the tree to which u
belongs can be “grown” by acquiring node u and the corresponding matched node
(Fig. 2a).

• AUGMENT: If edge (u, v) is tight, l(u) = l(v) = + and u, v belong to different
trees then the cardinality of matching x can be increased by “flipping” variable xe
for edges e along the path connecting the roots of the two trees (Fig. 2b). All nodes
in the trees become free.

• SHRINK: If edge (u, v) is tight, l(u) = l(v) = + and u, v belong to the same tree
then there is cycle of odd length that can be shrunk to a blossom (Fig. 2c). The
dual variable for this new blossom is set to 0.

• EXPAND: If node v is a blossom with yv = 0 and l(v) = − then it can be expanded
(Fig. 2d).

Note, AUGMENT is the only operation that changes the current matching x . The
cardinality of the matching is increased by 1, so there are at most n/2 augmentations.

123

48 V. Kolmogorov

Arguably, it is the most desirable operation and should have a priority over other
operations.

2.3 Dual updates

These updates modify dual variables y for nodes in the trees while keeping trees and
blossoms intact. For each tree T we choose the amount of dual change δT ≥ 0. For
node v ∈ T the dual variable yv is then updated as follows: if l(v) = − then set
yv := yv − δT , and if l(v) = + then set yv := yv + δT . The value of the dual objective
function is increased by

∑
T δT . Vector y must remain a feasible dual, which gives

the following constraints on {δT }:

δT ≤ slack(u, v) (u, v) is a (+, ∅) edge, u ∈ T (4a)

δT + δT ′ ≤ slack(u, v) (u, v) is a (+,+) edge, u ∈ T, v ∈ T ′, T (= T ′ (4b)

δT ≤ slack(u, v)/2 (u, v) is a (+,+) edge, u, v ∈ T (4c)

δT ≤ yv v is a “−” node which is a blossom, v ∈ T (4d)

δT − δT ′ ≤ slack(u, v) (u, v) is a (+,−) edge, u ∈ T, v ∈ T ′, T (= T ′ (4e)

Suppose that the change δT for tree T is set to the maximal value so that one of the
constraints in (4) becomes tight. If such constraint is (4a), then after the dual change the
(+, ∅) edge (u, v) becomes tight, so the GROW operation can be applied. Similarly,
if constraints (4b–d) are tight then the operations AUGMENT, SHRINK, EXPAND
can be performed, respectively. The only case when no immediate progress can be
made on tree T is when δT is determined by the last constraint (4e).

Let us now discuss specific strategies for choosing values {δT }. Techniques pro-
posed in the literature can be classified as follows:

1. A single tree approach. All primal and dual operations are applied to the cur-
rent tree T until it is augmented. All other trees consist only of single root nodes
(labeled as “+”). Note, case (4e) can never arise since there are no “−” nodes
outside the current tree T .

2. A multiple tree approach with fixed δ (i.e. δT = δ for all trees T). δ is set to
the maximum value subject to constraints (4). Case (4e) is not a concern since
δT − δT ′ = 0 for all pairs of trees T, T ′. Thus, δ is determined by one of the
constraints (4a–d), and so after the dual update further progress can be made in at
least one of the trees.

3. A multiple tree approach with variable δ. This is the most flexible approach pro-
posed by Cook and Rohe [8]. Updates {δT } could potentially be chosen as to
maximize the increase in the dual objective

∑
T δT , but this would be too costly.

Instead, a certain greedy heuristic is used in [8] (see Sect. 3.1).

Let us call the sequence of operations between two successive augmentations a
“stage”. Clearly, there are at most n/2 stages. It can be shown that each stage can
perform at most O(n) basic operations GROW, SHRINK, EXPAND. Assuming that
(i) each dual update results in at least one basic operation and that (ii) each GROW,
SHRINK, EXPAND, and a dual update take O(m) time, we arrive at a straightforward
bound O(n2m) for the overall complexity.

123

Blossom V: a new implementation of a minimum cost perfect matching algorithm 49

Note that assumption (i) is valid for the first two approaches. However, in the third
approach values of δT may be determined by the constraint (4e) rather than (4a–d).
Thus, the O(n2m) complexity is not guaranteed for the variable δ approach.

2.4 Comparison of different strategies

There are several factors to consider when choosing which strategy to use. The first
factor may be the number of basic operations such as GROW, SHRINK, and EXPAND.
The single tree strategy is usually considered to be the least efficient from this point of
view [8,19]. An intuition here is that exploring a single tree may result in a very long
augmenting path and consequently in many basic operations, while a much shorter
augmenting path may exist which starts from a different tree. The single tree strategy
becomes particularly inefficient towards the end. After extensive experiments with the
single tree approach and with the multiple tree approach with fixed δ Gerngross [19]
suggested to use the former for matching the first 95% of the nodes and the latter for
matching the remaining 5%. (Matching the last few remaining nodes often takes the
most amount of time).

Let us now discuss the two strategies that grow multiple trees. Cook and Rohe
[8] motivated the variable δ approach over fixed δ as follows: computing the value
of δ requires examining the edges out of the “+” nodes in all trees, but tight edges
will be created only for a very small number of these trees. The experiments in [8]
show an improvement of the multiple tree strategy with variable δ over the single tree
implementation of Applegate and Cook [5].

It is not clear, however, whether the explanation in the previous paragraph still holds
if priority queues are used for computing δ, as discussed below. In this case the exam-
ination of the edges out of the “+” nodes is not performed explicitly. Mehlhorn and
Schäfer [24] implemented a multiple tree approach with fixed δ and with an extensive
use of priority queues, and showed an improvement over the code of Cook and Rohe,
sometimes asymptotic.

Still, the variable δ approach has a certain advantage over the fixed δ since it can
increase the dual objective by a much larger amount. (With fixed δ the dual update is
determined as a bottleneck among all trees, and thus can be quite small). Intuitively,
larger dual updates should result in a smaller number of basic operations.

Using priority queues The second factor to consider when selecting a strategy is the
efficiency of computing dual updates satisfying constraints (4). A rather natural idea
that has been exploited both for improving the worst-case bound and for faster real
implementations is to store edges in priority queues, so that the operation of computing
the minimum slack required in (4) can be performed efficiently.

To our knowledge, so far priority queues have been used only for the first two strat-
egies (single tree and multiple trees with fixed δ). The implementation of Mehlhorn
and Schäfer uses a special type of priority queues called concatenable priority queue
within multiple trees with fixed δ framework. The reason for using this version of
priority queues is that it can handle SHRINK and EXPAND operations. The imple-
mentation in [24] achieves the O(nm log n) worst-case bound proved in [28].

123

50 V. Kolmogorov

Mehlhorn and Schäfer pose the question whether the variable δ approach can be
incorporated in a O(nm log n) algorithm. Unfortunately, this does not look straight-
forward. The difficulty lies in the following: with the fixed δ the slacks of edges of
the same type, e.g. exterior (+,+) edges, are decreased by the same amount 2δ, so all
these edges can be stored in a single priority queue. This is no longer the case in the
variable δ approach. Edges between different pairs of trees should thus be stored in
different priority queues. As the worst case, the number of trees may be "(n) and the
number of edges between trees may be "(m). (We say that there is an edge between
trees T and T ′ if there is an edge of type (+,+), (+,−) or (−,+) connecting a node
u ∈ T to a node v ∈ T ′). If computing the dual updates and finding new tight edges
is done in a naïve way by traversing edges between trees, this would result in O(m)

time per dual update, yielding the O(n2m) overall bound.

3 Description of our implementation

In this work we attempt to use priority queues in a variable δ approach. For reasons
discussed above we abandoned the idea of achieving a better bound than O(n2m).
Instead, we assume that the worst-case described above does not occur in practice, i.e.
the number of trees and the number of edges between trees are much smaller than the
number of nodes and edges in the graph, respectively. This assumption is validated
by previous studies: it has been observed that the algorithm often spends most of the
time trying to match the last few remaining nodes, see e.g. [8] (although constructing
a counter-example could potentially be possible1).

We maintain dynamically an auxiliary graph (V, E) whose nodes correspond to
alternating trees T . This graph is stored using the adjacency list representation. Each
node T of the graph has pointers to three priority queues pq++(T), pq+∅(T) and
pq−(T). These queues store respectively (+,+) edges between “+” nodes of the tree
T , (+, ∅) edges from “+” nodes of T to free nodes, and “−” nodes in T which are
blossoms. Similarly, an edge (T, T ′) ∈ E has pointers to priority queues pq++(T, T ′),
pq+−(T, T ′) and pq−+(T, T ′) which store respectively (+,+), (+,−) and (−,+)

edges between a node in T and a node in T ′.
We use Fibonacci heaps [15] as our priority queues. It requires 4 pointers per edge,

an integer indicating the degree of the heap node representing the edge, and a binary
flag. Each edge belongs to at most one queue, so no extra memory is allocated. It
should be noted, though, that Fibonacci heaps may not be the optimal choice: it has
been shown [25] that in practice other data structures such as pairing heaps [14] are
more efficient. Pairing heaps also take less memory. We plan to investigate alternative
priority queue implementations in the future.

1 Consider, for example, a graph consisting of O(
√

n) components, where each component contains an
O(

√
n) odd number of nodes. Assume that each component is connected via low-cost edges and different

components are connected via high-cost edges, so that augmentations between two components can be
performed only when one of the components has been completely shrunk. Consider the first stage when no
component is completely shrunk. Intuitively, it seems possible to construct a graph such that there would
be "(

√
n) trees in this stage and "(

√
n) dual updates (determined by low-cost edges), assuming that each

update results in at most one SHRINK in each component.

123

Blossom V: a new implementation of a minimum cost perfect matching algorithm 51

When performing primal updates for tree T , we need to determine quickly for edge
(u, v) ∈ E with u ∈ T the corresponding edge (T, T ′) ∈ E (if it already exists).
One option would be to store an array of pointers at each tree. However, this would
require O(|V|2) memory, where |V| is the number of trees in the beginning of the
algorithm (which can be quite large). We avoid the quadratic memory requirement by
using the following scheme. We store a pointer CURRENT_ EDGE at each tree. Ini-
tially, these pointers are NULL. Before processing T we go through edges (T, T ′) ∈ E
and set CURRENT_ EDGE(T ′) to point to the edge (T, T ′) (and simultaneously check
whether an augmentation is possible for trees (T, T ′)). After the update we go through
the edges (T, T ′) again and set the pointers back to NULL.

It is not difficult to see how to maintain the auxiliary graph during primal updates,
as well the correct membership of edges in priority queues. Consider, for example, the
GROW operation. Suppose that a free matched edge (u, v) has been added to a tree T ,
so that u becomes a “−” node and v becomes a “+” node. First, we process node u.
We add u to the queue pq−(T), if u is a blossom. We then go through all incident
edges (u, w). If w is a “+” node in some tree T ′ then we do the following:

• Remove (u, w) from the queue pq+∅(T ′). (Note, each node has a pointer to the
tree that it belongs to, so node T ′ in the auxiliary graph can be easily located).

• If T ′ (= T then we locate the edge (T, T ′) using pointer CURRENT_ EDGE(T ′) and
add (u, w) to the queue pq−+(T, T ′). (It may happen that CURRENT_ EDGE(T ′)
is NULL if there is no edge (T, T ′); in that case we first allocate and add this edge
to the auxiliary graph and set CURRENT_ EDGE(T ′) accordingly).

After processing u we go through all edges (v,w) and do the following:

• If w is free, add (v,w) to pq+∅(T).
• If w ∈ T and l(w) = +, remove (v,w) from pq+∅(T) and add it to pq++(T).
• If w ∈ T ′, T ′ (= T and l(w) = −, add (v,w) to pq+−(T, T ′).
• If w ∈ T ′, T ′ (= T and l(w) = +, remove (v,w) from pq+∅(T) and add it to

pq++(T, T ′).

In the last two cases we first need to make sure that an edge (T, T ′) exists by allocating
it, if necessary.

SHRINK, EXPAND and AUGMENT operations can be considered similarly. Note,
when augmenting trees (T, T ′) we traverse all edges stored in all queues associ-
ated with T , T ′ and incident edges of the auxiliary graph, and deallocate these trees
and edges. This concludes the description of operations performed with the auxiliary
graph.2

Maintaining dual variables An important issue is how to store edge slacks and vari-
ables yv for nodes v. Maintaining them explicitly would be too costly since after each

2 Our implementation is actually slightly more complicated than what is described above. Namely, if we
encounter a (+, ∅) edge (v, w) with slack 0 while growing node v, then instead of adding (v, w) to
pq+∅(T) we add w and the corresponding matching node to the tree, and mark them as “unprocessed”.
Trees are then grown in a depth-first search fashion. Other operations during GROW and AUGMENT
should thus take into account the “processed” status of nodes. SHRINK and EXPAND are only called if
there are no unprocessed nodes.

123

52 V. Kolmogorov

dual update we would need to go through all nodes and edges in the tree and update
these variables. Following a long tradition, we use an implicit method which avoids
going through all nodes and edges. Namely, each node v has variable ȳv . The true var-
iable yv can be determined as follows. For interior nodes inside blossoms and for free
exterior nodes we have yv = ȳv . For an exterior node in tree T we have yv = ȳv − εT
if l(v) = +, and yv = ȳv + εT if l(v) = −. Here εT is a variable stored at tree T
which accumulates all dual updates for T . We use an analogous technique for edges.
Each edge a = (u, v) stores a variable slack(a). A true slack for an exterior edge
a = (u, v) is determined as follows: (1) take value slack(a); (2) if u ∈ T then
subtract or add εT , depending on whether l(u) = + or l(u) = −; (3) do the same
for node v. Whenever a node changes its label, we go through the incident edges a
and update slack(a) accordingly. This is done at the same time as we update the
membership of a in priority queues.

3.1 Updating duals

In this section we discuss how to compute updates {δT }. A possible heuristic would
be to go through trees T in a certain order and greedily increase δT as much as pos-
sible. Unfortunately, this procedure would get stuck if there are circular constraints
δT1 − δT2 ≤ 0, . . ., δTk−1 − δTk ≤ 0, δTk − δT1 ≤ 0. To overcome this issue, Cook
and Rohe propose first to compute strongly connected components (SCC) over trees
in order to detect such circular constraints, and then use a greedy technique in which
a single δ is used for each component. Their Blossom IV implementation actually
uses connected components (CC) instead of strongly connected components; this still
guarantees that some progress will be made.

It is worth noting that such greedy dual updates do not guarantee to make one of
the inequalities (4a–d) tight. If the CC procedure is used, then it may take up to O(n)

dual updates before a basic primal operation can be applied. (Note, each CC update
either results in a basic primal operation or merges some components together). The
bound O(n) can be tight if, for example, there are circular constraints δT1 − δT2 ≤
1, . . ., δTk−1 − δTk ≤ 1, δTk − δT1 ≤ 1. For this reason we believe that the Blossom IV
implementation is actually O(n3m), rather than O(n2m).3 The same applies to our
code.4 Interestingly, with the SCC procedure it may take a non-polynomial number of
dual updates before a basic primal operation can be applied, as can be demonstrated
on the same example.

We chose the following scheme as our default option. We go through trees in a cyclic
order performing primal updates. If no augmentations were performed during a cycle
then we run the heuristic dual update procedure of Cook and Rohe with connected
components.

3 I thank Bill Cook for confirming this conclusion.
4 It is not difficult to improve the complexity to O(n2m). For example, one could check after each pass over
trees whether any progress has been made, and if not make an extra call to the dual update procedure with
fixed δ. We decided not to do this, however, in order to guarantee that the dual variables stay half-integral
for integral input weights.

123

Blossom V: a new implementation of a minimum cost perfect matching algorithm 53

Cook and Rohe ask the question whether maximizing the dual objective
∑

T δT
may give any benefit, although they remark that solving this linear program would
be prohibitively costly. We decided to investigate this question. We solved the linear
program by reducing it to (the dual of) the minimum cost network flow in a graph with
2|V| nodes and 2|E | edges using the transformation described by Hochbaum [20], and
applying the successive shortest path algorithm of Ford and Fulkerson [4] to the latter
problem. In many cases we did not see any significant difference. However, for one
class of problems (structured geometric instances) solving the LP appears to perform
better than greedy dual updates.

The structure of our implementation suggests another possibility for updating duals.
Recall that we go through edges (T, T ′) before and after processing tree T for updating
CURRENT_ EDGE pointers. We then may as well compute the maximal dual change
δT for this tree. Unfortunately, we believe that the number of steps can then be non-
polynomial, as with the SCC procedure. Nevertheless, in our informal tests we did not
see major differences between different versions of greedy dual updates. In our initial
experiments (not reported here) we updated duals more frequently (after processing
each tree T), and we also used SCC updates at the end of each cycle with no augmen-
tations. For some classes of problems this version actually seemed to perform slightly
better than our default scheme with CC updates only.

3.2 Data structures

For completeness, we sketch the data structures that we used. The graph is stored
using the adjacency list representation. Each edge a has pointers TAIL_ ORIG(a),
HEAD_ ORIG(a), TAIL(a), HEAD(a); the first two point to the original nodes in V ,
and the last two point to current pseudonodes. For each interior node we also store
an ANCESTOR pointer in addition to the PARENT pointer. ANCESTOR pointers help
to determine the exterior grandparent node for an interior node more quickly; they
are updated using the path compression technique. In our implementation we try to
make sure that ANCESTOR’s point to penultimate nodes (i.e. interior nodes whose
parents are exterior). Note, expanded nodes cannot be deallocated immediately since
some ANCESTOR’s may point to them. Instead, if the number of expanded nodes
exceeds a certain threshold we go through all nodes, correct ANCESTOR’s and only
then deallocate expanded nodes.

We implemented two versions of the algorithm; we refer to them as A and B.
Version A is somewhat simpler. We perform all shrinks and expands explicitly, by
moving edges from one pseudonode to another and updating TAIL or HEAD point-
ers accordingly. Edges a inside blossoms are not in any priority queue, and satisfy
slack(a) = slack(a).

With this structure we observed that sometimes SHRINK operations take a very
long time and become the bottleneck of the algorithm. A closer inspection revealed
that there is a “cascading” sequence of shrinks during the same stage in which the
degree of the blossom becomes extremely large. For each shrink we go through all
incident edges and update TAIL or HEAD pointers again and again, and this becomes
the bottleneck.

123

54 V. Kolmogorov

To fix this issue, we implemented a modified version, which we call version B.
(We used this version in all experiments). Shrinks are now performed lazily: when
contracting an odd cycle into a blossom, we go through the incident edges of “−”
nodes, but not “+” nodes.5 As a result, the TAIL/HEAD pointers for exterior edges
may not be correct, i.e. they do not point to an exterior node. Thus, when processing
an edge we must now always check for this, and update the TAIL/HEAD pointers if
necessary. During this update we also move the edge from the adjacency list of the
interior node to the list of the exterior node. (This implies that we now need to use
doubly linked lists).

In version B priority queues pq++ for trees T may now contain interior edges.
Thus, whenever we call the FindMin operation for this priority queue, we need to
check the returned edge. If this edge is interior, we remove it from the queue and move
it to the list of “selfloops” for the penultimate node. The only exception is when the
ends of the edge are already penultimate nodes, then we insert the edge to the correct
place immediately. When the tree is augmented we go through edges stored in all
priority queues associated with the tree (and also through all edges incident to “−”
nodes), and correct inconsistencies. Processing each edge during these operations is
quite efficient because of the use of ANCESTOR pointers.

When we expand an exterior node, we process selfloops at penultimate nodes. These
edges are moved one level further.

It is worth noting that similar “cascading” behavior can potentially occur during
EXPAND operations; the same edge out of a “−” node could be processed many times
during the same stage. We did not put much effort into optimizing EXPAND operations
since in our experience the number of expands is usually significantly smaller than
the number of shrinks (so most blossoms are never expanded). This observation also
motivated some of the choices described earlier; in particular, the use of “selfloops”
defers an expensive part of the operation (determining precise ends of an edge) to a
later EXPAND operation, which may never occur.

In most of our tests the time spent in the EXPAND operations was negligible.
However, we did encounter several large instances in which these operations were a
bottleneck.

3.3 Initialization

Similar to the implementations of [8,24], our code supports the two standard strategies
for finding the initial solutions:

• Greedy initialization. First, for each node v we go through the incident edges, find
the smallest weight and set yv to the half of this weight. (This guarantees that all

5 After completing the first draft of this paper, we realized that the “cascading shrinks” problem has been
fixed in version B only partially. Although we no longer go through all incident edges of “+” nodes, we
traverse their tree children. During a “cascading” sequence of shrinks the blossom may acquire an extremely
large number of children, which are traversed again and again. We observed that for the last instance in
Table 9 the B5 method spends most of the time traversing children in SHRINK operations. We hope to fix
this issue in the future.

123

Blossom V: a new implementation of a minimum cost perfect matching algorithm 55

edges now have non-negative slacks). We then go over nodes again, and for each
node v greedily increase yv and choose a matching for v, if possible.

• Fractional matching initialization. Such initialization was proposed by Derigs and
Metz [9]. It first solves the fractional matching problem (consisting of constraints
(1b,d) only) and then rounds the obtained half-integral matching. We implemented
the approach described by Applegate and Cook [5] with Fibonacci heaps as priority
queues for solving the fractional matching problem.

3.4 Price-and-repair

A standard approach for solving very dense instances (e.g. complete graphs) is to use
a price-and-repair technique [5,8,10]. It starts by selecting an initial (sparse) subset
of edges and then iterates the following procedure. First, the optimal perfect matching
is computed over the current subset of edges. The next step is to compute slacks of
the remaining edges. (This operation is called pricing). If all slacks are non-negative
then the method stops—we have an optimal solution. Otherwise we add edges with
negative slacks and repeat the procedure.

If a few new edges have been added, then it may be more efficient to initialize
the perfect matching algorithm by repairing the existing solution rather than start-
ing from scratch. Several repair techniques have been proposed in the literature. We
implemented the careless repairs method of Cook and Rohe [8]. (They showed that
careless repairs outperform the method of Ball and Derigs [6]).

Our code supports the price-and-repair approach by providing interface functions
StartUpdate, AddNewEdge, FinishUpdate. The AddNewEdge function for
nodes u and v computes the slack of the edge (u, v) and adds the edge only if the
slack is negative. Note, if u and v belong to the same blossom then computing the
slack involves finding the least common ancestor (LCA) of these nodes in the tree
formed by the blossom structure. (More precisely, we need to determine nodes that
are penultimate to LCA(u,v)). Previous implementations of Applegate and Cook [5]
and Cook and Rohe [8] used efficient data structures for determining LCA. In our
code we implemented the data structure of Berkman and Vishkin [7] that allows to
compute LCA in O(1) time. This data structure is constructed during StartUpdate
and deallocated during FinishUpdate.

Solving complete geometric instances In [5,8] the price-and-repair approach was
used for solving complete geometric instances (that is, given a set of 2D points, com-
pute a minimum cost perfect matching in the complete graph induced by these points;
the edge weight is taken as the Euclidean distance rounded to the nearest integer).
We added this functionality to our code as well. A key computational task here is
identifying edges in the complete graph with negative slacks. Going through all edges
explicitly would be computationally infeasible. Instead, we use the underestimate of
the edge slack proposed by Applegate and Cook [5]:

slack(u, v) ≥ γ (u, v) = cuv − sum(u) − sum(v)

where

123

56 V. Kolmogorov

sum(v) = yv +
∑

S∈O:v∈S

yS

As suggested in [5], we find edges (u, v) with negative γ (u, v) and call the
AddNewEdge function only for those edges. Following Cook and Rohe [8], we imple-
mented a kd-tree structure for identifying edges with γ (u, v) < 0. (sum(·) is treated
as an extra geometric coordinate and γ (·) is treated as the distance function).

4 Computational results

In this section we compare the performances of the Blossom IV code [8], the code of
Mehlhorn and Schäfer [24], and our code [1], version 1.0. We will refer to them as
B4, MS and B5, respectively. We used the MS code accompanying the paper [24]. It
requires the LEDA library [23], version 4.2. Unfortunately, this version was no longer
available. Instead, we used the current free version of LEDA (LEDA-6.0-free-
FC8_i386-g++-4.1.2-std), but we had to make changes to the MS perfect
matching code to make it compile with the newer library. Mainly, it involved changing
the locations of .h files.6 Note, the MS algorithm that we tested is not identical to the
algorithm in LEDA 6.1. A comparison with the latter code is left as a future work.

The tests were performed on Intel Pentium III processor, 1133MHz with 512KB
cache and 2GB memory running Linux 2.6.9. Codes were compiled with the GNU c++
compiler, version 3.4.6, using the -O5 optimization flag. Running times were measured
via the clock_gettime(CLOCK_PROCESS_CPUTIME_ID, . . .) function. We
counted only the time spent in the main function that is called for computing the per-
fect matching; time spent for reading the problem from a file and allocating the graph
was not included.

Below, we report the times in seconds of 6 techniques: B4−, B4, MS, MS−, B5−,
B5. (The “−” flag indicates that a greedy initialization was used instead of the frac-
tional matching procedure of Derigs and Metz [9]—see Sect. 3.3). For the B5 code
we also measured the time for initialization (either greedy or fractional) and the time
spent in the EXPAND operations; they are given in square brackets.

We observed that sometimes the MS code had large memory requirements. For
some instances it caused disk swapping; the Unix top command reported that almost
all available memory of 2Gb was allocated to this process. In the tables below we
indicate such cases by “mem”. The memory usage of B4 and B5 was manageable; for
example, for the largest instance in Table 5 B4 required 323Mb (245Mb for B5), and
for the largest instance in Table 9 B4 required 181Mb (183 for B5).

6 We contacted the authors of [24] about the compilation issue. Guido Schäfer recommended using the
latest version of LEDA (which now incorporates a min cost perfect matching algorithm), as compiling the
original code of [24] with a newer version of LEDA comes with no warranty. Unfortunately, we were not
able to do this at the time of writing: we discovered that the perfect matching algorithm in a newer version of
LEDA had a bug which caused the program to crash. The support team at Algorithmic Solutions Software
GmbH informed us that the bug had recently been fixed, but the fix will appear only in the next official
release of LEDA after LEDA 6.1 scheduled for the second half of October 2008.

123

Blossom V: a new implementation of a minimum cost perfect matching algorithm 57

Table 1 Delaunay triangulations, t = 20

n m B4− B4 MS− MS B5− B5

10,000 29,973 0.41 0.39 1.27 1.03 0.13 [0.02, 0.00] 0.11 [0.04, 0.00]

20,000 59,971 2.05 2.01 2.70 2.20 0.30 [0.05, 0.01] 0.27 [0.08, 0.01]

40,000 119,968 7.70 7.59 5.74 4.74 0.68 [0.11, 0.01] 0.60 [0.17, 0.02]

80,000 239,970 22.1 21.8 12.2 10.0 1.49 [0.23, 0.04] 1.33 [0.37,0.04]

160,000 479,960 53.6 52.7 30.5 21.3 3.34 [0.48, 0.12] 3.02 [0.77, 0.12]

Bold values indicate the best performing method for each instance

Table 2 Sweep-line triangulations, t = 20

n m B4− B4 MS− MS B5− B5

10,000 29,973 1.74 1.66 1.56 1.10 0.15 [0.02, 0.00] 0.13 [0.04, 0.00]

20,000 59,971 8.06 7.89 3.38 2.39 0.38 [0.05, 0.01] 0.32 [0.10, 0.01]

40,000 119,968 38.4 38.1 7.53 5.28 0.92 [0.11, 0.03] 0.77 [0.22, 0.03]

80,000 239,970 188 188 19.2 of 3.17 [0.22, 0.26] 2.83 [0.47, 0.24]

160,000 479,960 550 551 43.4 of 8.75 [0.47, 0.96] 8.02 [0.98, 0.94]

Bold values indicate the best performing method for each instance

In two cases the MS code also gave incorrect results (Table 2)—the returned solu-
tion was either not a perfect matching or had a larger cost than the solutions returned
by B4 and B5. We believe that this was caused by an overflow: for these instances the
cost of the matching exceeded the capacity of 32-integer numbers.7 These cases are
marked by “of”.

We used 9 problem types. Note, generators for some of them take a random seed as
an input. In such cases we report the average statistics over t instances with different
random seeds; the number of trials t is then specified in the table caption. Graph sizes
are indicated in the tables (columns n and m). For all experiments in this paper (except
for those in Sect. 4.2) we randomly permuted the order of nodes and edges of the input
graph.

Triangulation instances (Tables 1, 2) We generated n random points from a 220×220

square and then computed triangulations of this point set. As in [24], we tested
two kinds of triangulations: Delaunay triangulations (computed with the code of
Shewchuk [26]) and triangulations by a sweep-line algorithm (we used the generator

7 Guido Schäfer informed us that some checkers had been added to the subsequent version of the code that
verify whether an overflow might occur.

123

58 V. Kolmogorov

Table 3 Sparse random instances, t = 20

n m B4− B4 MS− MS B5− B5

10,000 60,000 6.90 1.29 3.01 1.24 0.41 [0.04, 0.00] 0.55 [0.53, 0.00]

10,000 80,000 9.55 1.67 3.78 1.47 0.56 [0.05,0.00] 0.78 [0.76, 0.00]

10,000 100,000 2.94 2.25 4.55 1.56 0.73 [0.06,0.00] 0.99 [0.97, 0.00]

20,000 120,000 7.93 4.92 6.90 3.23 0.99 [0.09,0.00] 1.76 [1.72, 0.00]

20,000 160,000 21.5 7.79 8.74 3.72 1.40 [0.12, 0.00] 2.31 [2.29, 0.00]

20,000 200,000 15.2 10.7 10.5 4.65 1.81 [0.14, 0.00] 3.00 [2.95, 0.00]

40,000 240,000 116 22.6 21.6 9.12 2.40 [0.19, 0.01] 5.46 [5.42, 0.00]

40,000 320,000 25.6 31.9 20.1 10.5 3.20 [0.25, 0.04] 7.23 [7.14, 0.00]

40,000 400,000 95.7 43.8 24.5 12.0 4.16 [0.31, 0.18] 8.96 [8.90, 0.00]

Bold values indicate the best performing method for each instance

Table 4 Dense random instances, t = 20

n m B4− B4 MS− MS B5− B5

1,000 100,000 1.05 0.95 1.61 0.43 0.42 [0.05, 0.00] 0.39 [0.35,0.00]

1,000 200,000 1.97 2.57 3.21 0.78 0.87 [0.10, 0.00] 0.80 [0.74, 0.00]

1,000 400,000 3.45 4.56 4.85 1.25 1.34 [0.16, 0.00] 1.30 [1.18, 0.00]

2,000 200,000 4.15 3.38 4.57 1.18 1.02 [0.10, 0.00] 1.04 [0.99, 0.00]

2,000 400,000 5.86 7.92 9.27 2.06 2.16 [0.22, 0.03] 2.15 [2.03, 0.00]

2,000 800,000 8.46 12.3 13.1 3.14 3.24 [0.33, 0.00] 3.30 [3.12, 0.00]

4,000 400,000 8.92 12.0 12.0 2.90 2.64 [0.23, 0.01] 2.81 [2.71, 0.00]

4,000 800,000 25.7 26.0 23.0 6.45 5.59 [0.49, 0.02] 6.60 [6.36, 0.00]

4,000 1,600,000 20.5 36.7 34.9 9.47 8.39 [0.76, 0.01] 9.61 [9.20, 0.00]

Bold values indicate the best performing method for each instance

accompanying the paper [24]). Edge weights were set to the Euclidean distance
between the endpoints (rounded to the nearest integer for Delaunay triangulations,
and rounded down for sweep-line triangulations).

Random instances (Tables 3, 4) We generated random graphs with n nodes and m
edges (while ensuring that a perfect matching exists). Edge weights were assigned a
random integer value in [1, 216]. We used the same sizes as in [24].

123

Blossom V: a new implementation of a minimum cost perfect matching algorithm 59

Table 5 Planar Ising models, t = 20

Size n m B4− B4 MS− MS B5− B5

25 × 25 6,230 10,591 0.05 0.05 0.52 0.53 0.03 [0.01, 0.00] 0.03 [0.01, 0.00]

35 × 35 12,230 20,791 0.19 0.18 1.11 1.12 0.07 [0.01, 0.00] 0.07 [0.02, 0.00]

50 × 50 24,980 42,466 0.58 0.59 2.36 2.39 0.17 [0.04, 0.00] 0.17 [0.06, 0.00]

71 × 71 50,390 85,663 2.27 2.33 5.02 5.07 0.38 [0.09, 0.01] 0.39 [0.12, 0.01]

100 × 100 99,980 169,966 7.14 7.09 10.7 10.7 0.82 [0.18, 0.02] 0.83 [0.25, 0.02]

141 × 141 198,790 337,943 19.7 19.0 22.9 22.6 1.75 [0.38, 0.04] 1.81 [0.52, 0.04]

200 × 200 399,980 679,966 75.2 75.2 mem mem 3.81 [0.79, 0.10] 4.02 [1.09, 0.10]

283 × 283 800,870 1,361,479 222 211 mem mem 8.50 [1.69, 0.23] 8.70 [2.32, 0.22]

400 × 400 1,599,980 2,719,966 634 645 mem mem 18.2 [3.59, 0.40] 18.8 [4.93, 0.39]

“size” corresponds to the input planar grid graph, while n and m correspond to the graph in which a perfect match-
ing is computed
Bold values indicate the best performing method for each instance

Planar Ising models (Table 5) We considered the problem of computing a minimum
cut in a planar graph, where edge weights can have an arbitrary sign. (Clearly, it is
equivalent to a maximum cut problem). In physics it is often called the ground state
computation of an Ising model without magnetic field. We reduced the problem to a
minimum cost perfect matching problem as described in [27]. (This was the application
that motivated our interest in the perfect matching problem).

We used 4-connected square grids. Edge costs for the Ising problem were chosen
as random integers from [−215, 215].

DIMACS instances (Tables 6, 7, 8) We used three families from the first DIMACS
implementational challenge [21]. They were generated by the following programs:

• hardcard.f written by B. Mattingly. This family was shown by Gabow to be hard
for Edmonds’s cardinality matching algorithm.

• t.f and tt.f written by N. Ritchey and B. Mattingly. They generate a sequence of
K one- and tri-connected triangles, respectively. According to comments, the first
family tends to generate a lot of blossoms.

All three programs take an input number K ; it is specified in the Tables 6, 7, 8.

Structured geometric instances (Table 9) For our last set of problems we used TSP-
LIB data from [2] maintained by Gerd Reinelt and VLSI data from [3] provided by
Andre Rohe. (Some these instances have an odd number of points; in such cases
we removed the last point). The graph was obtained as a Delaunay triangulation of
a given set of 2D points (using the code of Shewchuk [26]). Edge weights were
set to the Euclidean distance between endpoints rounded to the nearest integer. The
Delaunay triangulation is known to contain a perfect matching, however this may not

123

60 V. Kolmogorov

Table 6 DIMACS instances: hardcard.f generator

K n m B4− B4 MS− MS B5− B5

100 600 80,000 3.1 0.02 0.24 0.08 0.59 [0.03, 0.00] 0.05 [0.05, 0.00]

200 1,200 320,000 32.2 0.21 1.28 0.32 4.86 [0.13, 0.00] 0.23 [0.23, 0.00]

400 2,400 1,280,000 341 10.3 9.68 1.37 29.6 [0.59, 0.00] 1.10 [1.10, 0.00]

800 4,800 5,120,000 3,607 2.61 41.1 5.98 241 [3.18, 0.00] 6.26 [6.24, 0.00]

1,600 9,600 20,480,000 – 787 177 31.6 1,637 [16.6, 0.00] 30.5 [30.5, 0.00]

Bold values indicate the best performing method for each instance

Table 7 DIMACS instances: t.f generator

K n m B4− B4 MS− MS B5− B5

100,00 30,000 39,999 5.57 3.13 2.89 3.11 0.16 [0.04, 0.00] 0.17 [0.06, 0.00]

20,000 60,000 79,999 17.3 36.2 6.12 6.54 0.41 [0.09, 0.00] 0.44 [0.14, 0.00]

40,000 120,000 159,999 70.6 88.2 13.3 13.5 0.68 [0.19, 0.00] 0.90 [0.30, 0.00]

80,000 240,000 319,999 305 1,521 30.0 29.3 1.80 [0.40, 0.00] 1.72 [0.58, 0.00]

160,000 480,000 639,999 4,803 809 mem mem 3.67 [0.83, 0.00] 3.88 [1.22, 0.00]

320,000 960,000 1,279,999 1,839 1,096 mem mem 7.93 [1.77, 0.00] 9.83 [2.60, 0.00]

Bold values indicate the best performing method for each instance

Table 8 DIMACS instances: tt.f generator

K n m B4− B4 MS− MS B5− B5

10,000 30,000 59,997 0.23 0.26 2.70 2.65 0.25 [0.06, 0.00] 0.21 [0.07, 0.00]

20,000 60,000 119,997 0.63 0.44 6.32 5.30 0.47 [0.12, 0.00] 0.48 [0.15, 0.00]

40,000 120,000 239,997 1.02 1.57 14.6 11.3 0.99 [0.24, 0.00] 1.62 [0.33, 0.00]

80,000 240,000 479,997 4.83 2.85 28.4 28.0 2.77 [0.50, 0.00] 1.82 [0.67, 0.00]

160,000 480,000 959,997 5.49 9.35 mem mem 6.14 [1.06, 0.00] 5.59 [1.41, 0.00]

320,000 960,000 1,919,997 14.9 15.8 mem mem 12.4 [2.23, 0.00] 16.4 [2.99, 0.00]

Bold values indicate the best performing method for each instance

be the case in practice due to numerical errors. To guarantee that the initial subset
contains a perfect matching, we compute greedily a matching over the existing edges
and then add n′/2 edges between remaining n′ unmatched nodes (see [1] for more
details).

123

Blossom V: a new implementation of a minimum cost perfect matching algorithm 61

Table 9 TSPLIB and VLSI geometric problems

Name n m B4− B4 MS− MS B5− B5

fnl4461 4,460 13,359 0.04 0.04 0.48 0.37 0.03 [0.01, 0.00] 0.03 [0.01, 0.00]

brd14051 14,050 42,134 0.35 0.31 2.13 1.75 0.21 [0.03, 0.00] 0.18 [0.06, 0.01]

d15112 15,112 45,800 0.50 0.46 2.18 1.65 0.23 [0.04, 0.01] 0.20 [0.06, 0.01]

d18512 18,512 55,525 0.44 0.38 2.42 1.94 0.22 [0.05, 0.00] 0.22 [0.08,0.00]

dan59296 59,296 177,336 1.32 1.15 7.60 6.42 0.93 [0.16, 0.03] 0.80 [0.26, 0.03]

sra104815 104,814 314,416 4.42 4.60 15.3 12.8 2.04 [0.30, 0.33] 1.91 [0.43, 0.29]

ara238025 238,024 714,003 186 261 61.2 43.9 147 [0.72, 134] 172 [1.06, 156]

lra498378 498,378 149,5586 339 344 mem mem 125 [1.59, 109] 112 [2.68, 96.3]

lrb744710 744,710 2,234,362 6,585 4,978 mem mem 4,020 [2.47, 3146] 882 [3.79,111]

Bold values indicate the best performing method for each instance

Such problems were used for experiments by Cook and Rohe [8]. They showed that
Delaunay triangulation leads to a very good approximation to the complete geometric
problem. Delaunay triangulation can also be used as the initial subset of edges for the
price-and-repair technique discussed in Sect. 3.4.

From Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9 we can conclude the following:

• In the majority of our examples the B5 code outperforms B4 and MS implemen-
tations. For some classes of problems the improvement is roughly by an order of
magnitude (Tables 1, 2, 5, 7).

• B5 spends most of the time in the fractional matching initialization procedure on
problems in Tables 3, 4, 6. Thus, these problems are “easy” in the sense that they
can be solved by fractional matching almost to optimality.

• The time in EXPAND operations for the B5 code is negligible in all instances
except for large VLSI problems in Table 9, where it can become a bottleneck.

Note, the MS code is competitive only on “easy” problems in Tables 3, 4, 6, but with
one notable exception—the ara238025 instance in Tables 9. We believe that this
instance indicates the importance of data structures that guarantee O(m log n) work
per augmentation for difficult problems.

4.1 Testing dual update strategies

In this section we test the effect of different dual update strategies in our code on a
subset of problems used earlier:

[P1] Delaunay triangulation with n = 80,000 (penultimate line in Table 1)
[P2] Sweep-line triangulation with n = 80,000 (penultimate line in Table 2)

123

62 V. Kolmogorov

[P3] Sparse random problem triangulation with n = 40,000, m = 400,000 (last line
in Table 3)

[P4] Dense random problem triangulation with n = 40,00, m = 1,600,000 (last line
in Table 4)

[P5] Planar Ising model 283 × 283 (penultimate line in Table 5)

We ran t = 5 trials for each problem above. We also used 5 VLSI instances listed in
the second part of Table 9; we will refer to them as G1, G2, G3, G4, G5.

For P3 and P4 the fractional matching initialization would already solve the prob-
lems almost to optimality, therefore we decided not to use this initialization for them.
Thus, we used B5− for P3, P4 and B5 for other problems.

In Table 10 we compare the fixed δ approach and three variable δ approaches: with
connected components (CC), strongly connected components (SCC) and solving the
LP by transforming it to a minimum cost network flow problem (see Sect. 3.1). Note,
in these experiments we used double precision floating point numbers to ensure the
correctness of the LP approach.8 Table 10 reports the running time in seconds exclud-
ing the time for dual updates. (For fixed δ, CC and SCC the time for dual updates
was a small fraction of the total time—15% at most, but for LP dual updates were
the dominating factor). Three numbers in square brackets represent mean numbers of
GROW, SHRINK and EXPAND operations, respectively.

The first conclusion that we can draw from Table 10 is that the number of operations
in the fixed δ approach is consistently larger than in the variable δ approaches. This
confirms the finding of Cook and Rohe [8] about the importance of the variable δ

approach. (Note, the running times of the fixed δ approach is also considerably larger
compared to CC and SCC, but this is not a fair comparison since the fixed δ approach
does not require the auxiliary graph, and thus can potentially be implemented faster).

Let us discuss the relative performance of CC, SCC and LP. For problems P1–P5
they look comparable, so a global LP approach is unlikely to give much gain even
if we could solve the LP very efficiently. However, for VLSI instances G2–G5 solv-
ing the LP results in a significantly smaller number of basic operations (especially
EXPAND operations) and consequently in a much smaller time for primal updates.
Unfortunately, the time for solving the LP negates this gain.

To remedy the situation, we could solve the LP only if the auxiliary graph is suffi-
ciently small, e.g. the number of trees is smaller than µn for some constant µ ∈ [0, 1].
Table 11 shows how µ influences the performance. As µ decreases, the time for pri-
mal updates and the number of EXPAND operations increase, while the time for dual
updates decreases. For large VLSI instances G3, G4, G5 we get a significant speed-up
with values µ ∈ {0.002, 0.004, 0.008} compared to the time reported in Table 9. This
refutes the conjecture of Cook and Rohe [8] that computing an optimal solution of the
linear program is unlikely to be of practical value due to the time required to solve
the LP.

8 Using an argumentation similar to the one in [5], one can show that in CC and SCC approaches dual
variables are guaranteed to be multiples of 1/2 throughout the algorithm. However, the LP approach does
not have such guarantees, as we observed experimentally.

123

Blossom V: a new implementation of a minimum cost perfect matching algorithm 63

Ta
bl

e
10

T
he

ef
fe

ct
of

di
ff

er
en

td
ua

ls
tr

at
eg

ie
s

Fi
xe

d
δ

V
ar

ia
bl

e
δ

C
C

SC
C

L
P

P1
14

.7
[5

99
16

,2
07

06
,4

47
4]

1.
37

[4
83

23
,1

69
33

,1
98

8]
1.

37
[4

82
75

,1
69

39
,1

98
5]

1.
39

[4
81

40
,1

69
24

,1
97

7]

P2
12

.2
[8

63
94

,1
72

51
,4

61
5]

3.
02

[5
84

71
,1

33
79

,1
29

1]
3.

02
[5

83
60

,1
33

64
,1

28
3]

3.
04

[5
80

35
,1

33
63

,1
29

0]

P3
31

4
[9

87
12

,1
73

6,
49

0]
3.

73
[4

75
12

,1
3,

3]
3.

27
[4

00
50

,5
,0

]
3.

20
[3

88
08

,5
,0

]

P4
33

.0
[6

26
1,

54
,1

7]
8.

65
[4

02
0,

4,
1]

8.
06

[3
58

2,
10

,0
]

8.
06

[3
63

7,
5,

0]

P5
1,

05
7

[9
87

48
0,

19
17

65
,7

38
23

]
9.

09
[7

11
69

7,
13

65
81

,2
48

00
]

9.
31

[7
30

44
4,

13
72

78
,2

54
85

]
11

.7
[7

21
12

3,
13

71
82

,2
54

30
]

G
1

0.
96

[3
89

77
,1

30
50

,1
83

9]
0.

87
[3

60
43

,1
20

65
,1

32
6]

0.
88

[3
62

13
,1

20
69

,1
33

4]
0.

88
[3

58
34

,1
20

41
,1

31
2]

G
2

3.
05

[6
95

94
,3

16
17

,5
64

5]
2.

07
[6

60
28

,3
01

51
,4

29
5]

2.
14

[6
61

37
,3

02
69

,4
36

7]
1.

80
[6

23
95

,2
91

20
,3

40
3]

G
3

70
3

[2
23

53
7,

11
88

98
,4

50
75

]
17

3
[2

03
91

9,
10

27
91

,2
72

80
]

23
2

[2
04

53
4,

10
50

01
,2

94
48

]
12

.1
[1

63
17

2,
81

18
5,

11
15

5]

G
4

–
11

5
[4

16
30

0,
21

73
96

,5
48

40
]

11
3

[4
16

30
8,

21
71

84
,5

47
19

]
28

.0
[3

84
72

0,
19

62
42

,3
22

88
]

G
5

–
89

4
[6

94
74

8,
32

19
46

,4
72

83
]

90
8

[6
99

92
7,

32
38

16
,4

92
35

]
28

.0
[4

84
93

7,
20

01
95

,2
30

45
]

T
he

ru
nn

in
g

tim
e

ex
cl

ud
es

th
e

tim
e

sp
en

ti
n

du
al

up
da

te
s.

D
ou

bl
e

pr
ec

is
io

n
nu

m
be

rs
ar

e
us

ed
in

st
ea

d
of

in
te

ge
rs

.F
or

m
at

:p
ri

m
al

tim
e

[G
RO

W
s,

SH
R

IN
K

s,
E

X
PA

N
D

s]

123

64 V. Kolmogorov

Ta
bl

e
11

Pe
rf

or
m

an
ce

as
a

fu
nc

tio
n

of
µ

µ
=

1.
0

µ
=

0.
01

6
µ

=
0.

00
8

µ
=

0.
00

4
µ

=
0.

00
2

µ
=

0.
00

1

G
2

1.
80

+
44

.1
[3

40
3]

1.
93

+
1.

30
[3

84
0]

1.
94

+
0.

14
[3

98
9]

1.
96

+
0.

08
[4

02
3]

1.
84

+
0.

05
[3

66
1]

1.
90

+
0.

04
[3

77
1]

G
3

12
.1

+
27

3
[1

11
55

]
29

.5
+

4.
47

[1
49

19
]

30
.4

+
1.

14
[1

47
24

]
31

.3
+

0.
25

[1
53

67
]

24
.7

+
0.

18
[1

48
19

]
31

.3
+

0.
12

[1
66

85
]

G
4

28
.0

+
75

3
[3

22
88

]
27

.6
+

91
.7

[3
34

13
]

35
.0

+
15

.4
[3

62
98

]
37

.3
+

3.
16

[3
82

64
]

77
.2

+
0.

83
[4

55
17

]
86

.1
+

0.
50

[4
64

89
]

G
5

28
.0

+
25

86
[2

30
45

]
27

.3
+

11
7

[2
63

91
]

30
.5

+
29

.8
[2

79
76

]
65

.2
+

1.
49

[3
22

59
]

95
.9

+
0.

66
[3

27
07

]
14

1
+

0.
47

[3
35

84
]

(I
f

th
e

nu
m

be
r

of
tr

ee
s

is
sm

al
le

r
th

an
µ

n
th

en
du

al
s

ar
e

up
da

te
d

by
so

lv
in

g
th

e
L

P,
ot

he
rw

is
e

vi
a

C
C

du
al

up
da

te
s)

.D
ou

bl
e

pr
ec

is
io

n
nu

m
be

rs
ar

e
us

ed
.F

or
m

at
:p

ri
m

al
tim

e+
du

al
tim

e
[E

X
PA

N
D

s]
.N

ot
e,

th
e

C
C

co
lu

m
n

in
Ta

bl
e

10
co

rr
es

po
nd

s
to

µ
=

0

123

Blossom V: a new implementation of a minimum cost perfect matching algorithm 65

Table 12 Complete geometric instances via price-and-repair

Name B4 B5 B5 (LP, µ = 0.005)

dan59296 8.19 (5) 10.2 [2.03, 0.28] (7) 10.0 [1.94, 0.27] (7)

sra104815 117 (6) 31.0 [8.65, 1.05] (9) 25.3 [5.86, 0.87] (8)

ara238025 3,496 (5) 452 [351, 31.7] (7) 114 [56.1, 5.36] (8)

lra498378 10,758 (6) 1,952 [332, 837] (10) 2,118 [230, 1001] (11)

lrb744710 32,364 (5) 3,647 [3439, 23.9] (8) 329 [191, 5.95] (7)

Bold values indicate the best performing method for each instance

4.2 Complete geometric instances via price-and-repair

In this section we compare the running times for solving complete geometric instances
using the iterative price-and-repair approach discussed in Sect. 3.4. We compare only
codes B4 and B5, since the price-and-repair technique is not implemented in the MS
code. We used the same initial subset of edges for both codes (computed by the default
setting of the Blossom IV code—quad nearest neighbors). The running times below
exclude the time for generating the initial subset. Note, this experiment was the only
one in which nodes and edges were not randomly permuted.

Motivated by experiments in the previous section, we tested the B5 code with the
default settings and with the option µ = 0.005 (see Sect. 4.1 for the description of
this parameter; this option required double precision floating point numbers). Running
times are given in Table 12. The number in round parentheses gives the number of
iterations of the price-and-repair method. For the B5 code we also report the time
spent in the perfect matching subroutine (the first number in square brackets) and the
time in the AddNewEdge function (the second number in square brackets).

5 Conclusions and future work

We described a new implementation of Edmonds’s blossom algorithm for computing
a perfect matching of minimum cost. In the majority of our experiments our Blossom
V code outperformed previous implementations of Cook and Rohe [8] and Mehlhorn
and Schäfer [24] (although we were able to compare only with the original code of
[24] adapted to compile with a newer LEDA library, not with the algorithm in the
current LEDA version). For some classes of problems the improvement is roughly by
an order of magnitude (Tables 1, 2, 5, 7).

On large VLSI instances we observed two interesting effects not exhibited on other
problems: (i) the time for EXPAND operations often becomes the bottleneck, and
(ii) updating the duals by solving the linear program gives a substantial speed-up
compared to greedy dual updates. Future work may include changing the data struc-
tures to make EXPANDs more efficient (although this may degrade the performance
on other classes of problems where EXPANDs are not a bottleneck), and speeding up

123

66 V. Kolmogorov

the algorithm for solving the linear program for the dual updates. (At the moment we
transform the problem to a minimum cost flow as described by Hochbaum [20] and
then use our own implementation of a successive shortest path algorithm).

In the future we may also try to implement a maximum cost (non-perfect) matching
algorithm, using the framework of the Blossom V code.

Acknowledgments I thank Guido Schäfer and the support team at Algorithmic Solutions Software GmbH
for answering questions about their implementation, and anonymous reviewers for comments that helped
to improve the presentation of the paper.

References

1. http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html (Blossom V code, version 1.0)
2. http://www.iwr.uni-heidelberg.de/groups/comopt/software/tsplib95/tsp/
3. http://www.tsp.gatech.edu/vlsi/index.html
4. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Pren-

tice Hall, Englewood Cliffs (1993)
5. Applegate, D., Cook, W.: Solving large-scale matching problems. Network Flows and Matchings.

DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 12, pp. 557–576
(1993)

6. Ball, M.O., Derigs, U.: An analysis of alternate strategies for implementing matching algorithms. Net-
works 13, 517–549 (1983)

7. Berkman, O., Vishkin, U.: Recursive star-tree parallel data structure. SIAM J. Comput. 22(2),
221–242 (1993)

8. Cook, W., Rohe, A.: Computing minimum-weight perfect matchings. INFORMS J. Comput. 11(2),
138–148, (1999). Computer code available at http://www2.isye.gatech.edu/~wcook/blossom4/

9. Derigs, U., Metz, A.: On the use of optimal fractional matchings for solving the (integer) matching
problem. Computing 36, 263–270 (1986)

10. Derigs, U., Metz, A.: Solving (large scale) matching problems combinatorially. Math. Program.
50, 113–122 (1991)

11. Edmonds, J.: Maximum matching and a polyhedron with 0-1 vertices. J. Res. Natl. Bur. Stand. 69,
125–130 (1965)

12. Edmonds, J.: Path, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
13. Edmonds, J., Johnson, E.L., Lockhart, S.C.: Blossom I: A Computer Code for the Matching Problem.

IBM T. J. Watson Research Center, Yorktown Heights, New York (1969)
14. Fredman, M., Sedgewick, R., Sleator, D., Tarjan, R.: The pairing heap: a new form of self-adjusting

heap. Algorithmica 1(1), 111–129 (1986)
15. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algo-

rithms. J. ACM 34(3), 596–615 (1987)
16. Gabow, H.: Implementation of Algorithms for Maximum Matching on Nonbipartite Graphs. PhD

thesis, Stanford University (1973)
17. Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking. In:

Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 434–443 (1990)
18. Gabow, H.N., Galil, Z., Spencer, T.H.: Efficient implementation of graph algorithms using contrac-

tion. J. ACM 36(3), 540–572 (1989)
19. Gerngross, P.: Zur implementation von edmonds’ matching algorithmus: Datenstrukturen und versch-

iedene varianten. Diplomarbeit, Institut fur Mathematik, Universitat Augsburg (1991)
20. Hochbaum, D.: Instant recognition of half integrality and 2-approximations. In: 3rd International

Workshop on Approximation Algorithms for Combinatorial Optimization (1998)
21. Johnson, D.S., McGeoch, C.C.: Network Flows and Matching: First DIMACS Implementation Chal-

lenge. American Mathematical Society, Providence (1993). Generators available at ftp://dimacs.
rutgers.edu/pub/netflow/generators/matching

22. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart, and Winston,
New York (1976)

123

ftp://dimacs.rutgers.edu/pub/netflow/generators/matching
http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html
http://www.iwr.uni-heidelberg.de/groups/comopt/software/tsplib95/tsp/
http://www.tsp.gatech.edu/vlsi/index.html
http://www2.isye.gatech.edu/~wcook/blossom4/
ftp://dimacs.rutgers.edu/pub/netflow/generators/matching

Blossom V: a new implementation of a minimum cost perfect matching algorithm 67

23. Mehlhorn, K., Näher, S.: LEDA: a Platform for Combinatorial and Geometric Computing. Cambridge
University Press, New York (1999)

24. Mehlhorn, K., Schäfer, G.: Implementation of O(nmlogn) weighted matchings in general graphs: the
power of data structures. J. Exp. Algorithmics (JEA) 7, 4 (2002)

25. Moret, B., Shapiro, H.: An empirical analysis of algorithms for constructing a minimum spanning tree.
In: 2nd Workshop on Algorithms and Data Structures, pp. 400–411 (1991)

26. Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and delaunay triangulator. In:
Applied Computational Geometry: Towards Geometric Engineering. LNCS, vol. 1148, pp. 203–222.
Springer, Heideberg (1996). Computer code available at http://www.cs.cmu.edu/quake/triangle.html

27. Shih, W.-K., Wu, S., Kuo, Y.S.: Unifying maximum cut and minimum cut of a planar graph. Trans.
Comput. 39(5), 694–697 (1990)

28. Gabow, H., Galil, Z., Micali, S.: An O(EV log V) algorithm for finding a maximal weighted matching
in general graphs. SIAM J. Comput. 15, 120–130 (1986)

123

http://www.cs.cmu.edu/quake/triangle.html

	Blossom V: a new implementation of a minimum cost perfect matching algorithm
	Abstract
	1 Introduction
	2 Background: Edmonds's blossom algorithm
	2.1 Overview of the algorithm
	2.2 Primal updates
	2.3 Dual updates
	2.4 Comparison of different strategies

	3 Description of our implementation
	3.1 Updating duals
	3.2 Data structures
	3.3 Initialization
	3.4 Price-and-repair

	4 Computational results
	4.1 Testing dual update strategies
	4.2 Complete geometric instances via price-and-repair

	5 Conclusions and future work
	Acknowledgments

