Mathematical Programming Computation, Volume 2, Issue 3-4, December 2010
An inexact interior point method for L1-regularized sparse covariance selection
Lu Li, Kim-Chuan Toh
Sparse covariance selection problems can be formulated as logdeterminant (log-det) semidefinite programming (SDP) problems with large numbers of linear constraints. Standard primal–dual interior-point methods that are based on solving the Schur complement equation would encounter severe computational bottlenecks if they are applied to solve these SDPs. In this paper, we consider a customized inexact primal–dual path-following interior-point algorithm for solving large scale log-det SDP problems arising from sparse covariance selection problems. Our inexact algorithm solves the large and ill-conditioned linear system of equations in each iteration by a preconditioned iterative solver. By exploiting the structures in sparse covariance selection problems, we are able to design highly effective preconditioners to efficiently solve the large and ill-conditioned linear systems. Numerical experiments on both synthetic and real covariance selection problems show that our algorithm is highly efficient and outperforms other existing algorithms.
Full Text: PDF
Imprint and privacy statement
For the imprint and privacy statement we refer to the Imprint of ZIB.
© 2008-2024 by Zuse Institute Berlin (ZIB).