Mathematical Programming Computation, Volume 3, Issue 4, December 2011
Practical strategies for generating rank-1 split cuts in mixed-integer linear programming
Gerard Cornuéjols, Giacomo Nannicini
In this paper we propose practical strategies for generating split cuts, by considering integer linear combinations of the rows of the optimal simplex tableau, and deriving the corresponding Gomory mixed-integer cuts; potentially, we can generate a huge number of cuts. A key idea is to select subsets of variables, and cut deeply in the space of these variables. We show that variables with small reduced cost are good candidates for this purpose, yielding cuts that close a larger integrality gap. An extensive computational evaluation of these cuts points to the following two conclusions. The first is that our rank-1 cuts improve significantly on existing split cut generators (Gomory cuts from single tableau rows, MIR, Reduce-and-Split, Liftand-Project, Flow and Knapsack cover): onMIPLIB instances, these generators close 24% of the integrality gap on average; adding our cuts yields an additional 5%. The second conclusion is that, when incorporated in a Branch-and-Cut framework, these new cuts can improve computing time on difficult instances.
Full Text: PDF
Imprint and privacy statement
For the imprint and privacy statement we refer to the Imprint of ZIB.
© 2008-2024 by Zuse Institute Berlin (ZIB).