Gomory mixed-integer cuts are one of the key components in Branch-and-Cut solvers for mixed-integer linear programs. The textbook formula for generating these cuts is not used directly in open-source and commercial software that work in finite precision: Additional steps are performed to avoid the generation of invalid cuts due to the limited numerical precision of the computations. This paper studies the impact of some of these steps on the safety of Gomory mixed-integer cut generators. As the generation of invalid cuts is a relatively rare event, the experimental design for this study is particularly important. We propose an experimental setup that allows statistically significant comparisons of generators. We also propose a parameter optimization algorithm and use it to find a Gomory mixed-integer cut generator that is as safe as a benchmark cut generator from a commercial solver even though it generates many more cuts.

Full Text: PDF

We study solution approaches for the design of reliably connected networks. Specifically, given a network with arcs that may fail at random, the goal is to select a minimum cost subset of arcs such the probability that a connectivity requirement is satisfied is at least 1?, where is a risk tolerance.We consider two types of connectivity requirements. We first study the problem of requiring an s-t path to exist with high probability in a directed graph. Then we consider undirected graphs, where we require the graph to be fully connected with high probability.We model each problem as a stochastic integer program with a joint chance constraint, and present two formulations that can be solved by a branch-and-cut algorithm. The first formulation uses binary variables to represent whether or not the connectivity requirement is satisfied in each scenario of arc failures and is based on inequalities derived from graph cuts in individual scenarios. We derive additional valid inequalities for this formulation and study their facet-inducing properties. The second formulation is based on probabilistic graph cuts, an extension of graph cuts to graphs with random arc failures. Inequalities corresponding to probabilistic graph cuts are sufficient to define the set of feasible solutions and violated inequalities in this class can be found efficiently at integer solutions, allowing this formulation to be solved by a branch-and-cut algorithm. Computational results demonstrate that the approaches can effectively solve instances on large graphs with many failure scenarios. In addition, we demonstrate that, by varying the risk tolerance, our model yields a rich set of solutions on the efficient frontier of cost and reliability.

Full Text: PDF

For the imprint and privacy statement we refer to the Imprint of ZIB.

© 2008-2023 by Zuse Institute Berlin (ZIB).