MPC 2017, ISSUE 1
Mathematical Programming Computation, Volume 9, Issue 1, March 2017
Computing convex hulls and counting integer points with polymake
Benjamin Assarf, Ewgenij Gawrilow, Katrin Herr, Michael Joswig, Benjamin Lorenz, Andreas Paffenholz, Thomas Rehn
The main purpose of this paper is to report on the state of the art of computing integer hulls and their facets as well as counting lattice points in convex polytopes. Using the polymake system we explore various algorithms and implementations. Our experience in this area is summarized in ten “rules of thumb”.
Full Text: PDF
Mathematical Programming Computation, Volume 9, Issue 1, March 2017
Fast separation for the three-index assignment problem
Trivikram Dokka, Ioannis Mourtos, Frits C. R. Spieksma
A critical step in a cutting plane algorithm is separation, i.e., establishing whether a given vector x violates an inequality belonging to a specific class. It is customary to express the time complexity of a separation algorithm in the number of variables n. Here, we argue that a separation algorithm may instead process the vector containing the positive components of x, denoted as supp(x), which offers a more compact representation, especially if x is sparse; we also propose to express the time complexity in terms of |supp(x)|. Although several well-known separation algorithms exploit the sparsity of x, we revisit this idea in order to take sparsity explicitly into account in the time-complexity of separation and also design faster algorithms. We apply this approach to two classes of facet-defining inequalities for the three-index assignment problem, and obtain separation algorithms whose time complexity is linear in |supp(x)| instead of n. We indicate that this can be generalized to the axial k-index assignment problem and we show empirically how the separation algorithms exploiting sparsity improve on existing ones by running them on the largest instances reported in the literature.
Full Text: PDF
Mathematical Programming Computation, Volume 9, Issue 1, March 2017
Improved branch-cut-and-price for capacitated vehicle routing
Diego Pecin, Artur Pessoa, Marcus Poggi, Eduardo Uchoa
The best performing exact algorithms for the capacitated vehicle routing problem developed in the last 10 years are based in the combination of cut and column generation. Some authors only used cuts expressed over the variables of the original formulation, in order to keep the pricing subproblem relatively easy. Other authors could reduce the duality gaps by also using a restricted number of cuts over the master LP variables, stopping when the pricing becomes prohibitively hard. A particularly effective family of such cuts are the subset row cuts. This work introduces a technique for greatly reducing the impact on the pricing of these cuts, thus allowing much more cuts to be added. The newly proposed branch-cut-and-price algorithm also incorporates and combines for the first time (often in an improved way) several elements found in previous works, like route enumeration and strong branching. All the instances used for benchmarking exact algorithms, with up to 199 customers, were solved to optimality. Moreover, some larger instances with up to 360 customers, only considered before by heuristic methods, were solved too.
Full Text: PDF
Mathematical Programming Computation, Volume 9, Issue 1, March 2017
On efficiently combining limited-memory and trust-region techniques
Oleg Burdakov, Lujin Gong, Spartak Zikrin, Ya-xiang Yuan
Limited-memory quasi-Newton methods and trust-region methods represent two efficient approaches used for solving unconstrained optimization problems. A straightforward combination of them deteriorates the efficiency of the former approach, especially in the case of large-scale problems. For this reason, the limited-memory methods are usually combined with a line search. We show how to efficiently combine limited-memory and trust-region techniques. One of our approaches is based on the eigenvalue decomposition of the limited-memory quasi-Newton approximation of the Hessian matrix. The decomposition allows for finding a nearly-exact solution to the trust-region subproblem defined by the Euclidean norm with an insignificant computational overhead as compared with the cost of computing the quasi-Newton direction in line-search limited-memory methods. The other approach is based on two new eigenvalue-based norms. The advantage of the new norms is that the trust-region subproblem is separable and each of the smaller subproblems is easy to solve. We show that our eigenvalue-based limited-memory trust-region methods are globally convergent. Moreover, we propose improved versions of the existing limited-memory trust-region algorithms. The presented results of numerical experiments demonstrate the efficiency of our approach which is competitive with line-search versions of the L-BFGS method.
Full Text: PDF
Imprint and privacy statement
For the imprint and privacy statement we refer to the Imprint of ZIB.
© 2008-2024 by Zuse Institute Berlin (ZIB).