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Abstract We propose a method for support vector machine classification using
indefinite kernels. Instead of directly minimizing or stabilizing a nonconvex loss func-
tion, our algorithm simultaneously computes support vectors and a proxy kernel matrix
used in forming the loss. This can be interpreted as a penalized kernel learning prob-
lem where indefinite kernel matrices are treated as noisy observations of a true Mercer
kernel. Our formulation keeps the problem convex and relatively large problems can be
solved efficiently using the projected gradient or analytic center cutting plane meth-
ods. We compare the performance of our technique with other methods on several
standard data sets.

Mathematics Subject Classification (2000) Primary 62H30; Secondary 90C25 ·
68T05

1 Introduction

Support vector machines (SVM) have become a central tool for solving binary classi-
fication problems. A critical step in support vector machine classification is choosing
a suitable kernel matrix, which measures similarity between data points and must be
positive semidefinite because it is formed as the Gram matrix of data points in a repro-
ducing kernel Hilbert space. This positive semidefinite condition on kernel matrices is
also known as Mercer’s condition in the machine learning literature. The classification
problem then becomes a linearly constrained quadratic program. Here, we present an

R. Luss (B) · A. d’Aspremont
ORFE Department, Princeton University, Princeton, NJ 08544, USA
e-mail: rluss@alumni.princeton.edu

A. d’Aspremont
e-mail: aspremon@princeton.edu

123



98 R. Luss, A. d’Aspremont

algorithm for SVM classification using indefinite kernels,1 i.e. kernel matrices formed
using similarity measures which are not positive semidefinite.

Our interest in indefinite kernels is motivated by several observations. First, certain
similarity measures take advantage of application-specific structure in the data and
often display excellent empirical classification performance. Unlike popular kernels
used in support vector machine classification, these similarity matrices are often indef-
inite, so do not necessarily correspond to a reproducing kernel Hilbert space. (See [25]
for a discussion.)

In particular, an application of classification with indefinite kernels to image classifi-
cation using Earth Mover’s Distance was discussed in Zamolotskikh and Cunningham
[35]. Similarity measures for protein sequences such as the Smith–Waterman and
BLAST scores are indefinite yet have provided hints for constructing useful positive
semidefinite kernels such as those decribed in Saigo et al. [29] or have been trans-
formed into positive semidefinite kernels with good empirical performance (see [19],
for example). Tangent distance similarity measures, as described in Simard et al. [31]
or Haasdonk and Keysers [13], are invariant to various simple image transformations
and have also shown excellent performance in optical character recognition. Finally,
it is sometimes impossible to prove that some kernels satisfy Mercer’s condition or
the numerical complexity of evaluating the exact positive kernel is too high and a
proxy (and not necessarily positive semidefinite) kernel has to be used instead (see
[9], for example). In both cases, our method allows us to bypass these limitations. Our
objective here is to derive efficient algorithms to directly use these indefinite similarity
measures for classification.

Our work closely follows, in spirit, recent results on kernel learning (see [20] or
[26]), where the kernel matrix is learned as a linear combination of given kernels, and
the result is explicitly constrained to be positive semidefinite. While this problem is
numerically challenging, Bach et al. [2] adapted the SMO algorithm to solve the case
where the kernel is written as a positively weighted combination of other kernels. In
our setting here, we never numerically optimize the kernel matrix because this part of
the problem can be solved explicitly, which means that the complexity of our method
is substantially lower than that of classical kernel learning algorithms and closer in
practice to the algorithm used in Sonnenberg et al. [32], who formulate the multiple
kernel learning problem of Bach et al. [2] as a semi-infinite linear program and solve it
with a column generation technique similar to the analytic center cutting plane method
(ACCPM) we use here.

1.1 Current results

Several methods have been proposed for dealing with indefinite kernels in SVMs.
A first direction embeds data in a pseudo-Euclidean (pE) space: Haasdonk [12], for
example, formulates the classification problem with an indefinite kernel as that of
minimizing the distance between convex hulls formed from the two categories of data

1 A preliminary version of this paper appeared in the proceedings of the Neural Information Processing
Systems (NIPS) 2007 conference and is available at http://books.nips.cc/nips20.html.
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Support vector machine classification 99

embedded in the pE space. The nonseparable case is handled in the same manner using
reduced convex hulls. (See [3] for a discussion on geometric interpretations in SVM.)

Another direction applies direct spectral transformations to indefinite kernels: flip-
ping the negative eigenvalues or shifting the eigenvalues and reconstructing the kernel
with the original eigenvectors in order to produce a positive semidefinite kernel (see
[34,35] for example). Yet another option is to reformulate either the maximum margin
problem or its dual in order to use the indefinite kernel in a convex optimization prob-
lem. One reformulation suggested in Lin and Lin [22] replaces the indefinite kernel
by the identity matrix and maintains separation using linear constraints. This method
achieves good performance, but the convexification procedure is hard to interpret.
Directly solving the nonconvex problem sometimes gives good results as well (see
[12,33]) but offers no guarantees on performance.

1.2 Contributions

In this work, instead of directly transforming the indefinite kernel, we simultaneously
learn the support vector weights and a proxy Mercer kernel matrix by penalizing the
distance between this proxy kernel and the original, indefinite one. Our main result
is that the kernel learning part of that problem can be solved explicitly, meaning that
the classification problem with indefinite kernels can simply be formulated as a per-
turbation of the positive semidefinite case.

Our formulation can be interpreted as a penalized kernel learning problem with
uncertainty on the input kernel matrix. In that sense, indefinite similarity matrices
are seen as noisy observations of a true positive semidefinite kernel and we learn a
kernel that increases the generalization performance. From a complexity standpoint,
while the original SVM classification problem with indefinite kernel is nonconvex,
the penalization we detail here results in a convex problem, and hence can be solved
efficiently with guaranteed complexity bounds.

The paper is organized as follows. In Sect. 2 we formulate our main classification
result and detail its interpretation as a penalized kernel learning problem. In Sect. 3
we describe three algorithms for solving this problem. Section 4 discusses several
extensions of our main results. Finally, in Sect. 5, we test the numerical performance
of these methods on various data sets.

Notation We write Sn (Sn+) to denote the set of symmetric (positive-semidefinite)
matrices of size n. The vector e is the n-vector of ones. Given a matrix X , λi (X)

denotes the i th eigenvalue of X . X+ is the positive part of the matrix X , i.e. X+ =∑
i max(0, λi )viv

T
i where λi and vi are the i th eigenvalue and eigenvector of the

matrix X . Given a vector x , ‖x‖1 = ∑ |xi |.

2 SVM with indefinite kernels

In this section, we modify the SVM kernel learning problem and formulate a penal-
ized kernel learning problem on indefinite kernels. We also detail how our framework
applies to kernels that satisfy Mercer’s condition.
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100 R. Luss, A. d’Aspremont

2.1 Kernel learning

Let K ∈ Sn be a given kernel matrix and let y ∈ Rn be the vector of labels, with
Y = diag(y), the matrix with diagonal y. We formulate the kernel learning problem
as in Lanckriet et al. [20], where the authors minimize an upper bound on the mis-
classification probability when using SVM with a given kernel K . This upper bound
is the generalized performance measure

ωC (K ) = max
{0≤α≤C,αT y=0}

αT e − Tr
(

K (Yα)(Yα)T
)

/2 (1)

where α ∈ Rn and C is the SVM misclassification penalty. This is also the classic
1-norm soft margin SVM problem. They show that ωC (K ) is convex in K and solve
problems of the form

min
K∈K

ωC (K ) (2)

in order to learn an optimal kernel K ∗ that achieves good generalization performance.
When K is restricted to convex subsets of Sn+ with constant trace, they show that prob-
lem (2) can be reformulated as a convex program. Further restrictions to K reduce (2)
to more tractable optimization problems such as semidefinite and quadratically con-
strained quadratic programs. Our goal is to solve a problem similar to (2) by restricting
the distance between a proxy kernel used in classification and the original indefinite
similarity measure.

2.2 Learning from indefinite kernels

The performance measure in (1) is the dual of the SVM classification problem with
hinge loss and quadratic penalty. When K is positive semidefinite, this problem is a
convex quadratic program. Suppose now that we are given an indefinite kernel matrix
K0 ∈ Sn . We formulate a new instance of problem (2) by restricting K to be a positive
semidefinite kernel matrix in some given neighborhood of the original (indefinite)
kernel matrix K0 and solve

min
{K�0, ‖K−K0‖2

F ≤β}
max

{αT y=0, 0≤α≤C}
αT e − 1

2
Tr

(
K (Yα)(Yα)T

)

in the variables K ∈ Sn and α ∈ Rn , where the parameter β > 0 controls the distance
between the original matrix K0 and the proxy kernel K . This is the kernel learning
problem (2) with K = {K � 0, ‖K − K0‖2

F ≤ β}. The above problem is infeasible
for small values of β, so we replace here the hard constraint on K by a penalty ρ on
the distance between the proxy kernel and the original indefinite similarity matrix and
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Support vector machine classification 101

solve instead

min{K�0} max
{αT y=0, 0≤α≤C}

αT e − 1

2
Tr

(
K (Yα)(Yα)T

)
+ ρ‖K − K0‖2

F (3)

Because (3) is convex-concave and the inner maximization has a compact feasible set,
we can switch the max and min to form the dual

max
{αT y=0,0≤α≤C}

min{K�0} αT e − 1

2
Tr

(
K (Yα)(Yα)T

)
+ ρ‖K − K0‖2

F (4)

in the variables K ∈ Sn and α ∈ Rn .
We first note that problem (4) is a convex optimization problem. The inner mini-

mization problem is a convex conic program on K . Also, as the pointwise minimum
of a family of concave quadratic functions of α, the solution to the inner problem is
a concave function of α, hence the outer optimization problem is also convex (see
[5] for further details). Thus, (4) is a concave maximization problem subject to linear
constraints and is therefore a convex problem in α. Our key result here is that the inner
kernel learning optimization problem in (4) can be solved in closed form.

Theorem 1 Given a similarity matrix K0 ∈ Sn, a vector α ∈ Rn of support vector
coefficients and the label matrix Y = diag(y), the optimal kernel in problem (4) can
be computed explicitly as:

K ∗ =
(

K0 + (Yα)(Yα)T /(4ρ)
)

+ (5)

where ρ ≥ 0 controls the penalty.

Proof For a fixed α, the inner minimization problem can be written out as

min{K�0} αT e + ρ

(

Tr(K T K ) − 2 Tr
(

K T
(

K0 + 1

4ρ
(Yα)(Yα)T

))

+ Tr(K T
0 K0)

)

where we have replaced ‖K − K0‖2
F = Tr

(
(K − K0)

T (K − K0)
)

and collected

similar terms. Adding and subtracting the constant ρ Tr
((

K0 + 1
4ρ

(Yα)(Yα)T
)T

(
K0 + 1

4ρ
(Yα)(Yα)T

) )
shows that the inner minimization problem is equivalent to

the problem

minimize
∥
∥
∥K −

(
K0 + 1

4ρ
(Yα)(Yα)T

)∥
∥
∥

2

F
subject to K � 0

in the variable K ∈ Sn , where we have dropped the remaining constants from the
objective. This is the projection of the matrix K0 + (Yα)(Yα)T /(4ρ) on the cone of
positive semidefinite matrices, which yields the desired result. ��
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102 R. Luss, A. d’Aspremont

Plugging the explicit solution for the proxy kernel derived in (5) into the classifi-
cation problem (4), we get

max
{αT y=0, 0≤α≤C}

αT e − 1

2
Tr

(
K ∗(Yα)(Yα)T

)
+ ρ‖K ∗ − K0‖2

F (6)

in the variable α ∈ Rn , where (Yα)(Yα)T is the rank one matrix with coefficients
yiαiα j y j . Problem (6) can be cast as an eigenvalue optimization problem in the var-
iable α. Letting the eigenvalue decomposition of K0 + (Yα)(Yα)T /(4ρ) be VDVT ,
we get K ∗ = VD+V T , and with vi the i th column of V , we can write

Tr
(

K ∗(Yα)(Yα)T
)

= (Yα)T VD+V T (Yα)

=
∑

i

max

(

0, λi

(

K0 + 1

4ρ
(Yα)(Yα)T

)) (
αT Yvi

)2
.

Using the same technique, we can also rewrite the term ‖K ∗ − K0‖2
F using this eigen-

value decomposition. Our original optimization problem (4) finally becomes

maximize αT e − 1
2

∑
i max

(
0, λi (K0 + (Yα)(Yα)T /4ρ)

) (
αT Yvi

)2

+ρ
∑

i

(
max

(
0, λi (K0 + (Yα)(Yα)T /4ρ)

))2

−2ρ
∑

i Tr
(
(vi v

T
i )K0

)
max

(
0, λi

(
K0 + (Yα)(Yα)T /4ρ

))
+ ρ Tr(K0 K0)

subject to αT y = 0, 0 ≤ α ≤ C

(7)

in the variable α ∈ Rn . By construction, the objective function is concave, hence (7)
is a convex optimization problem in α.

A reformulation of problem (4) appears in Chen and Ye [7] where the authors move
the inner minimization problem to the constraints and get the following semi-infinite
quadratically constrained linear program (SIQCLP):

maximize t
subject to αT y = 0, 0 ≤ α ≤ C

t ≤ αT e − 1
2 Tr

(
K (Yα)(Yα)T

) + ρ‖K − K0‖2
F ∀K � 0.

(8)

In Sect. 3, we describe algorithms to solve our eigenvalue optimization problem in (7),
as well as an algorithm from Chen and Ye [7] that solves the different formulation in
(8), for completeness.

2.3 Interpretation

Our explicit solution of the optimal kernel given in (5) is the projection of a penalized
rank-one update to the indefinite kernel on the cone of positive semidefinite matrices.
As ρ tends to infinity, the rank-one update has less effect and in the limit, the opti-
mal kernel is given by zeroing out the negative eigenvalues of the indefinite kernel.
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Support vector machine classification 103

This means that if the indefinite kernel contains a very small amount of noise, the best
positive semidefinite kernel to use with SVM in our framework is the positive part of
the indefinite kernel.

This limit as ρ tends to infinity also motivates a heuristic for transforming the kernel
on the testing set. Since negative eigenvalues in the training kernel are thresholded
to zero in the limit, the same transformation should occur for the test kernel. Hence,
to measure generalization performance, we update the entries of the full kernel cor-
responding to training instances by the rank-one update resulting from the optimal
solution to (7) and threshold the negative eigenvalues of the full kernel matrix to zero
to produce a Mercer kernel on the test set.

2.4 Dual problem

As discussed above, problems (3) and (4) are dual. The inner maximization in prob-
lem (3) is a quadratic program in α, whose dual is the quadratic minimization problem

minimize 1
2 (e − δ + µ + yν)T (YKY)−1(e − δ + µ + yν) + CµT e

subject to δ, µ ≥ 0.
(9)

Substituting (9) for the inner maximization in problem (3) allows us to write a joint
minimization problem

minimize Tr
(
K −1(Y −1(e − δ + µ + yν))(Y −1(e − δ + µ + yν))T

)
/2

+ CµT e + ρ‖K − K0‖2
F

subject to K � 0, δ, µ ≥ 0

(10)

in the variables K ∈ Sn , δ, µ ∈ Rn and ν ∈ R. This is a quadratic program in the
variables δ, µ (which correspond to the constraints 0 ≤ α ≤ C) and ν (which is the
dual variable for the constraint αT y = 0). As we have seen earlier, any feasible solu-
tion α ∈ Rn produces a corresponding proxy kernel in (5). Plugging this kernel into
problem (10) allows us to compute an upper bound on the optimum value of problem
(4) by solving a simple quadratic program in the variables δ, µ, ν. This result can then
be used to bound the duality gap in (7) and track convergence.

3 Algorithms

We now detail two algorithms that can be used to solve problem (7), which maximizes
a nondifferentiable concave function subject to convex constraints. An optimal point
always exists since the feasible set is bounded and nonempty. For numerical stability, in
both algorithms, we quadratically smooth our objective to compute a gradient. We first
describe a simple projected gradient method which has numerically cheap iterations
but less predictable performance in practice. We then show how to apply ACCPM,
whose iterations are numerically more complex but which converges linearly. For
completeness, we also describe an exchange method from Chen and Ye [7] used to

123



104 R. Luss, A. d’Aspremont

solve problem (8), where the numerical bottleneck is a quadratically constrained linear
program solved at each iteration.

Smoothing Our objective contains terms of the form max{0, f (x)} for some function
f (x), which are not differentiable (described in the section below). These functions
are easily smoothed out by a Moreau–Yosida regularization technique (see [16], for
example). We replace the max by a continuously differentiable ε

2 -approximation as
follows:

ϕε( f (x)) = max
0≤u≤1

(
u f (x) − ε

2
u2

)
.

The gradient is then given by ∇ϕε( f (x))= u∗(x)∇ f (x) where u∗(x)=
argmaxϕε( f (x)).

Gradient Calculating the gradient of the objective function in (7) requires computing
the eigenvalue decomposition of a matrix of the form X (α) = K + ρααT . Given a
matrix X (α), the derivative of the i th eigenvalue with respect to α is then given by

∂λi (X (α))

∂α
= vT

i
∂ X (α)

∂α
vi (11)

where vi is the i th eigenvector of X (α). We can then combine this expression with the
smooth approximation above to obtain the gradient.

3.1 Computing proxy kernels

Because the proxy kernel in (5) only requires a rank one update of a (fixed) eigenvalue
decomposition

K ∗ =
(

K0 + (Yα)(Yα)T /(4ρ)
)

+ ,

we now briefly recall how vi and λi (X (α)) can be computed efficiently in this case (see
[10] for further details). We refer the reader to Kulis et al. [18] for another kernel learn-
ing example using this method. Given the eigenvalue decomposition X = V DV T ,
by changing basis this problem can be reduced to the decomposition of the diagonal
plus rank-one matrix, D + ρuuT , where u = V T α. First, the updated eigenvalues are
determined by solving the secular equations

det(D + ρuuT − λI ) = 0,

which can be done in O(n2). While there is an explicit solution for the eigenvectors
corresponding to these eigenvalues, they are not stable because the eigenvalues are
approximated. This instability is circumvented by computing a vector û such that
approximate eigenvalues λ are the exact eigenvalues of the matrix D + ρûûT , then
computing its stable eigenvectors explicitly, where both steps can be done in O(n2)
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Support vector machine classification 105

time. The key is that D + ρûûT is close enough to our original matrix so that the
eigenvalues and eigenvectors are stable approximations of the true values. Finally,
the eigenvectors of our original matrix are computed as V W , with W as the stable
eigenvectors of D + ρûûT . Updating the eigenvalue decomposition is reduced to an
O(n2) procedure plus one matrix multiplication, which is then the complexity of one
gradient computation.

We note that eigenvalues of symmetric matrices are not differentiable when some
of them have multiplicities greater than one (see [27] for a discussion), but a subgradi-
ent can be used instead of the gradient in all the algorithms detailed here. Lewis [21]
shows how to compute an approximate subdifferential of the k-th largest eigenvalue
of a symmetric matrix. This can then be used to form a regular subgradient of the
objective function in (7) which is concave by construction.

3.2 Projected gradient method

The projected gradient method takes a steepest descent step, then projects the new
point back onto the feasible region (see [4], for example). We choose an initial point
α0 ∈ Rn and the algorithm proceeds as in Algorithm 1.

Algorithm 1 Projected gradient method
1: Compute αi+1 = αi + t∇ f (αi ).
2: Set αi+1 = pA(αi+1).
3: If gap ≤ ε stop, otherwise go back to step 1.

Here, we have assumed that the objective function is differentiable (after smooth-
ing). The method is only efficient if the projection step is numerically cheap. The
complexity of each iteration then breaks down as follows:

Step 1. This requires an eigenvalue decomposition that is computed in O(n2) plus
one matrix multiplication as described above. Experiments below use a stepsize of
5/k for IndefiniteSVM and 10/k for PerturbSVM (described in Sect. 4.3) where k is
the iteration number. A good stepsize is crucial to performance, and must be chosen
separately for each data set as there is no rule of thumb. We note that a line search
would be costly here because it would require multiple eigenvalue decompositions to
recalculate the objective multiple times.
Step 2. This is a projection onto the region A = {αT y = 0, 0 ≤ α ≤ C} and can be
solved explicitly by sorting the vector of entries, with cost O(n log n).

Stopping Criterion We can compute a duality gap using the results of Sect. 2.4 where

Ki =
(

K0 + (Yαi )(Yαi )
T /(4ρ)

)

+

is the candidate kernel at iteration i and we solve problem (1), which simply means
solving a SVM problem with the positive semidefinite kernel Ki , and produces an
upper bound on (7), hence a bound on the suboptimality of the current solution.
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106 R. Luss, A. d’Aspremont

Complexity The number of iterations required by this method to reach a target preci-
sion of ε grows as O(1/ε2). See Nesterov [24] for a complete discussion.

3.3 Analytic center cutting plane method

The analytic center cutting plane method reduces the feasible region at each iteration
using a new cut computed by evaluating a subgradient of the objective function at the
analytic center of the current feasible set, until the volume of the reduced region con-
verges to the target precision. This method does not require differentiability. We set
L0 = {x ∈ Rn | xT y = 0, 0 ≤ x ≤ C}, which we can write as {x ∈ Rn | A0x ≤ b0},
to be our first localization set for the optimal solution. The method is described in
Algorithm 2 (see [4] for a more complete treatment of cutting plane methods).

Algorithm 2 Analytic center cutting plane method
1: Compute αi as the analytic center of Li by solving

xi+1 = argmin
x∈Rn

−
m∑

i=1

log
(

bi − aT
i x

)

where aT
i represents the i th row of coefficients from the left-hand side of {x ∈ Rn | Ai x ≤ b0}.

2: Compute ∇ f (x) at the center xi+1 and update the (polyhedral) localization set

Li+1 = Li ∩ {∇ f (xi+1)(x − xi+1) ≥ 0
}

where f is objective in problem (7).
3: If m ≥ 3n, reduce the number of constraints to 3n.
4: If gap ≤ ε stop, otherwise go back to step 1.

The complexity of each iteration breaks down as follows:

Step 1. This step computes the analytic center of a polyhedron and can be solved in
O(n3) operations using interior point methods, for example.
Step 2. This simply updates the polyhedral description. It includes the gradient com-
putation which again is O(n2) plus one matrix multiplication.
Step 3. This step requires ordering the constraints according to their relevance in the
localization set. One relevance measure for the j th constraint at iteration i is

aT
j ∇2 f (xi )

−1a j

(aT
j xi − b j )2

(12)

where f is the objective function of the analytic center problem. Computing the hes-
sian is easy: it requires matrix multiplication of the form AT DA where A is m × n
(matrix multiplication is kept inexpensive in this step by pruning redundant con-
straints) and D is diagonal. Restricting the number of constraints to 3n is a rule of
thumb; raising this limit increases the per iteration complexity while decreasing it
increases the required number of iterations.
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Stopping Criterion An upper bound is computed by maximizing a first order Taylor
approximation of f (α) at αi over all points in an ellipsoid that covers Ai , which can
be computed explicitly.

Complexity ACCPM is provably convergent in O(n(log 1/ε)2) iterations when using
cut elimination, which keeps the complexity of the localization set bounded. Other
schemes are available with slightly different complexities: a bound of O(n2/ε2) is
achieved in Goffin and Vial [11] using (cheaper) approximate centers, for example.

3.4 Exchange method for SIQCLP

The algorithm considered in Chen and Ye [7] in order to solve problem (8) falls under a
class of algorithms called exchange methods (as defined in [14]). These methods iter-
atively solve problems constrained by a finite subset of the infinitely many constraints,
where the solution at each iterate gives an improved lower bound to the maximization
problem. The subproblem solved at each iteration here is

maximize t

subject to αT y = 0, 0 ≤ α ≤ C

t ≤ αT e − 1
2 Tr

(
Ki (Yα)(Yα)T

) + ρ‖Ki − K0‖2
F i = 1, . . . , p

(13)

where p is the number of constraints used to approximate the infinitely many con-
straints of problem (8). Let (t1, α1) be an initial solution found by solving problem (13)
with p = 1 and K1 = (K0)+, where K0 is the input indefinite kernel. The algorithm
proceeds as in Algorithm 3 below.

Algorithm 3 Exchange method
1: Compute Ki+1 by solving the inner minimization problem of (4) as a function of αi .
2: Stop if

αT
i e − 1

2
Tr

(
Ki+1(Yαi )(Yαi )

T
)

+ ρ‖Ki+1 − K0‖2
F ≥ ti .

3: Solve problem (13) with an additional constraint using Ki+1 to get (ti+1, αi+1) and go back to step 1.

The complexity of each iteration breaks down as follows:

Step 1. This step can be solved analytically using Theorem 1. An efficient calculation
of Ki+1 can be made as in the other algorithms above using an O(n2) procedure plus
one matrix multiplication.
Step 2 (Stopping Criterion). The previous point (ti , αi ) is optimal if it is feasible
with respect to the new constraint, in which case it is feasible for the infinitely many
constraints of the original problem (8) and hence also optimal.
Step 3. This step requires solving a QCLP with a number of quadratic constraints
equivalent to the number of iterations. As shown in Chen and Ye [7], the QCLP can
be written as a regularized version of the multiple kernel learning (MKL) problem
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from Lanckriet et al. [20], where the number of constraints here is equivalent to the
number of kernels in MKL. Efficient methods to solve MKL with many kernels is an
active area of research, most recently in Rakotomamonjy et al. [28]. There, the authors
use a gradient method to solve a reformulation of problem (13) as a smooth maximi-
zation problem. Each objective value and gradient computation requires computing
a support vector machine, hence each iteration requires several SVM computations
which can be speeded up using warm-starting. Furthermore, Chen and Ye [7] prune
inactive constraints at each iteration in order to decrease the number of constraints in
the QCLP.

Complexity No rate of convergence is known for this algorithm, but the duality gap
given in Chen and Ye [7] is shown to monotonically decrease.

3.5 Matlab implementation

The first two algorithms discussed here were implemented in Matlab for the cases of
indefinite (IndefiniteSVM) and positive semidefinite (PerturbSVM) kernels and can
be downloaded from the authors’ webpages in a package called IndefiniteSVM. The ρ

penalty parameter is one-dimensional in the implementation. This package makes use
of the LIBSVM code of Chang and Lin [6] to produce suboptimality bounds and track
convergence. A Matlab implementation of the exchange method (due to the authors
of [7]) that uses MOSEK [23] to solve problem (13) is compared against the projected
gradient method in Sect. 5.

4 Extensions

In this section, we extend our results to other kernel methods, namely support vector
regressions and one-class support vector machines. In addition, we apply our method
to using Mercer kernels and show how to use more general penalties in our formulation.

4.1 SVR with indefinite kernels

The practicality of indefinite kernels in SVM classification similarly motivates using
indefinite kernels in support vector regression (SVR). We here extend the formulations
in Sect. 2 to SVR with linear ε-insensitive loss

ωC (K ) = max
{−C≤α≤C,αT e=0}

αT y − ε|α| − Tr(KααT )/2 (14)

where α ∈ Rn and C is the SVR penalty parameter. The indefinite SVR formulation
follows directly as in Sect. 2.2 and the optimal kernel is learned by solving

max
{αT e=0,−C≤α≤C}

min{K�0} αT y − ε|α| − 1

2
Tr

(
KααT

)
+ ρ‖K − K0‖2

F (15)
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in the variables K ∈ Sn and α ∈ Rn , where the parameter ρ > 0 controls the mag-
nitude of the penalty on the distance between K and K0. The following corollary to
Theorem 1 provides the solution to the inner minimization problem in (15)

Corollary 2 Given a similarity matrix K0 ∈ Sn and a vector α ∈ Rn of support
vector coefficients, the optimal kernel in problem (15) can be computed explicitly as

K ∗ =
(

K0 + ααT /(4ρ)
)

+ (16)

where ρ ≥ 0 controls the penalty.

The proof follows directly as in Theorem 1; the slight difference is that the vector of
labels y does not appear in the optimal kernel. Plugging in (16) into (15), the resulting
formulation can be rewritten as the convex eigenvalue optimization problem

maximize αT y − ε|α| − 1
2

∑
i max

(
0, λi

(
K0 + ααT /(4ρ)

)) (
αT vi

)2

+ρ
∑

i

(
max

(
0, λi (K0 + ααT /4ρ)

))2

−2ρ
∑

i Tr
(
(viv

T
i )K0

)
max

(
0, λi

(
K0 + ααT /(4ρ)

)) + ρ Tr(K0 K0)

subject to αT e = 0,−C ≤ α ≤ C

(17)

in the variable α ∈ Rn . Again, a proxy kernel given by (16) can be produced from
any feasible solution α ∈ Rn . Plugging the proxy kernel into problem (15) allows us
to compute an upper bound on the optimum value of problem (15) by solving a SVR
problem.

4.2 One-class SVM with indefinite kernels

The same reformulation can also be applied to one-class support vector machines
which have the formulation (see [30])

ων(K ) = max
{0≤α≤ 1

νl ,α
T e=1}

− Tr
(

KααT
)

/2 (18)

where α ∈ Rn , ν is the one-class SVM parameter, and l is the number of training
points. The indefinite one-class SVM formulation follows again as done for binary
SVM and SVR; the optimal kernel is learned by solving

max
{αT e=1,0≤α≤ 1

νl }
min{K�0} − 1

2
Tr(KααT ) + ρ‖K − K0‖2

F (19)

in the variables K ∈ Sn and α ∈ Rn . The inner minimization problem is identical to
that of indefinite SVR and the optimal kernel has the same form as given in Corollary 2.
Plugging (16) into (19) gives another convex eigenvalue optimization problem
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maximize − 1
2

∑
i max

(
0, λi

(
K0 + ααT /4ρ

)) (
αT vi

)2

+ρ
∑

i

(
max

(
0, λi

(
K0 + ααT /(4ρ)

)))2

−2ρ
∑

i Tr
((

viv
T
i

)
K0

)
max

(
0, λi

(
K0 + ααT /(4ρ)

)) + ρ Tr(K0 K0)

subject to αT e = 1, 0 ≤ α ≤ 1
νl

(20)

in the variable α ∈ Rn , which is identical to (17) without the first two terms in the
objective and slightly different constraints. The algorithm follows almost directly the
same as above for the indefinite SVR formulation.

4.3 Learning from Mercer kernels

While our central motivation is to use indefinite kernels for SVM classification, one
would also like to analyze what happens when a Mercer kernel is used as input in (4).
In this case, we learn another kernel that decreases the upper bound on generalization
performance and produces perturbed support vectors. We can again interpret the input
as a noisy kernel, and as such, one that will achieve suboptimal performance. If the
input kernel is the best kernel to use (i.e. is not noisy), we will observe that our frame-
work achieves optimal performance as ρ tends to infinity (through cross validation),
otherwise we simply learn a better kernel using a finite ρ.

When the similarity measure K0 is positive semidefinite, the proxy kernel K ∗ in
Theorem 1 simplifies to a rank-one update of K0

K ∗ = K0 + (Yα∗)(Yα∗)T /(4ρ) (21)

whereas, for indefinite K0, the solution was to project this matrix on the cone of
positive semidefinite matrices. Plugging (21) into problem (4) gives:

max
{αT y=0, 0≤α≤C}

αT e − 1

2
Tr

(
K0(Yα)(Yα)T

)
− 1

16ρ

∑

i, j

(αiα j )
2, (22)

which is the classic SVM problem given in (1) with a fourth order penalty on the
support vectors. For testing in this framework, we do not need to transform the kernel,
only the support vectors are perturbed. In this case, computing the gradient no longer
requires eigenvalue decompositions at each iteration. Experimental results are shown
in Sect. 5.

4.4 Componentwise penalties

Indefinite SVM can be generalized further with componentwise penalties on the
distance between the proxy kernel and the indefinite kernel K0. We generalize problem
(4) to
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max
{αT y=0,0≤α≤C}

min{K�0} αT e − 1

2
Tr

(
K (Yα)(Yα)T

)
+

∑

i, j

Hi j (Ki j −K0i j )
2 (23)

where H is now a matrix of varying penalties on the componentwise distances. For a
specific class of penalties, the optimal kernel K ∗ can be derived explicitly as follows.

Theorem 3 Given a similarity matrix K0 ∈ Sn, a vector α ∈ Rn of support vector
coefficients and the label matrix Y = diag(y), when H is rank-one with Hi j = hi h j ,
the optimal kernel in problem (23) has the explicit form

K ∗ =W −1/2
((

W 1/2
(

K0+ 1

4
(W −1Yα∗)(W −1Yα∗)T

)

W 1/2
)

+

)

W −1/2 (24)

where W is the diagonal matrix with Wii = hi .

Proof The inner minimization problem to problem (23) can be written out as

min{K�0}
∑

i, j

Hi j

(
K 2

i j − 2Ki j K0i j + K 2
0i j

)
− 1

2

∑

i, j

yi y jαiα j Ki j .

Adding and subtracting
∑

i, j Hi j

(
K0i j + 1

4Hi j
yi y jαiα j

)2
, combining similar terms,

and removing remaining constants gives

minimize ‖H1/2 ◦ (
K − (

K0 + 1
4H ◦ (Yα)(Yα)T

)) ‖2
F

subject to K � 0

where ◦ denotes the Hardamard product, (A ◦ B)i j = ai j bi j , (H1/2)i j = H1/2
i j , and

( 1
4H

)
i j = 1

4Hi j
. This is a weighted projection problem where Hi j is the penalty on

(Ki j − K0i j )
2. Since H is rank-one, the result follows from Theorem 3.2 of Higham

[15]. ��
Notice that Theorem 3 is a generalization of Theorem 1 where we had H = eeT . In

constructing a rank-one penalty matrix H , we simply assign penalties to each training
point. The componentwise penalty formulation can also be extended to true kernels.
If K0 � 0, then K ∗ in Theorem 3 simplifies to a rank-one update of K0:

K ∗ = K0 + 1

4

(
W −1/2Yα

) (
W −1/2Yα

)T
(25)

where no projection is required.

5 Experiments

In this section we compare the generalization performance of our technique to other
methods applying SVM classification to indefinite similarity measures. We also exam-
ine classification performance using Mercer kernels. We conclude with experiments
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showing convergence of our algorithms. All experiments on Mercer kernels use the
LIBSVM library.

5.1 Generalization with indefinite kernels

We compare our method for SVM classification with indefinite kernels to several
kernel preprocessing techniques discussed earlier. The first three techniques perform
spectral transformations on the indefinite kernel. The first, called denoise here, thresh-
olds the negative eigenvalues to zero. The second transformation, called flip, takes the
absolute value of all eigenvalues. The last transformation, shift, adds a constant to
each eigenvalue, making them all positive. See Wu et al. [34] for further details. We
also implemented an SVM modification (denoted Mod SVM) suggested in [22] where
a nonconvex quadratic objective function is made convex by replacing the indefinite
kernel with the identity matrix. The kernel only appears in linear inequality constraints
that separate the data. Finally, we compare our results with a direct use of SVM clas-
sification on the original indefinite kernel (SVM converges but the solution is only a
stationary point and not guaranteed to be optimal).

We first experiment on data from the USPS handwritten digits database Hull [17]
using the indefinite Simpson score and the one-sided tangent distance kernel to com-
pare two digits. The tangent distance is a transformation invariant measure—it assigns
high similarity between an image and slightly rotated or shifted instances—and is
known to perform very well on this data set. Our experiments symmetrize the one-sided
tangent distance using the square of the mean tangent distance defined in Haasdonk
and Keysers [13] and make it a similarity measure by negative exponentiation. We
also consider the Simpson score for this task, which is much cheaper to compute (a
ratio comparing binary pixels). We finally analyze three data sets (diabetes, german
and ala) from the UCI repository [1] using the indefinite sigmoid kernel.

Table 1 Summary statistics for the various data sets used in our experiments

Data set # Train # Test λmin λmax

USPS-3-5-SS 767 773 −70.00 903.94

USPS-3-5-TD1 767 773 −0.31 764.72

USPS-4-6-SS 829 857 −74.38 819.36

USPS-4-6-TD1 829 857 −0.72 771.07

Diabetes-sig 384 384 −0.65 211.62

German-sig 500 500 −928.10 8.50

A1a-sig 803 802 −0.01 84.44

The USPS data comes from the USPS handwritten digits database, the other data sets are taken from the
UCI repository. SS refers to the Simpson kernel, TD1 to the one-sided tangent distance kernel, and sig to
the sigmoid kernel. Training and testing sets were divided randomly. Notice that the Simpson kernels are
mostly highly indefinite while the one-sided tangent distance kernel is nearly positive semidefinite. The
sigmoid kernel is highly indefinite depending on the parametrization. Statistics for sigmoid kernels refer to
the optimal kernel parameterized under cross validation with Indefinite SVM. Spectrums are based on the
full kernel, i.e. combining training and testing data
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Table 2 Indefinite SVM performs favorably for the highly indefinite Simpson kernels

Data set Measure Denoise Flip Shift Mod SVM SVM Indefinite SVM

USPS-3-5-SS Accuracy 95.47 95.21 93.27 96.12 69.47 95.73

Recall 94.50 94.50 94.98 96.17 67.94 97.13

Average 94.98 94.86 94.12 96.15 68.71 96.43

USPS-3-5-TD1 Accuracy 98.58 98.45 98.58 98.19 98.58 98.45

Recall 98.56 98.33 98.56 97.85 98.56 98.33

Average 98.57 98.39 98.57 98.02 98.57 98.39

USPS-4-6-SS Accuracy 98.60 98.25 96.73 98.60 84.36 98.25

Recall 99.32 99.32 96.61 99.32 81.72 99.77

Average 98.96 98.79 96.67 98.96 83.04 99.01

USPS-4-6-TD1 Accuracy 99.30 99.30 99.18 99.18 99.30 99.30

Recall 99.77 99.77 99.55 99.55 99.77 99.77

Average 99.54 99.54 99.37 99.37 99.54 99.54

Diabetes-sig Accuracy 74.48 74.74 76.56 76.04 73.70 77.08

Recall 78.40 76.80 89.60 78.40 76.40 89.20

Average 76.44 75.77 83.08 77.22 75.05 83.14

German-sig Accuracy 70.40 70.40 75.60 72.60 69.40 62.80

Recall 78.00 78.00 46.67 66.00 80.00 85.33

Average 74.20 74.20 61.13 69.30 74.70 74.07

A1a-sig Accuracy 74.06 76.18 75.69 78.55 75.69 82.92

Recall 87.31 87.82 87.31 89.34 87.82 81.73

Average 80.69 82.00 81.50 83.95 81.75 82.32

Performance is comparable for the nearly positive semidefinite one-sided tangent distance kernel. Com-
parable performance with sigmoid kernels is more consistent with indefinite SVM across data sets. The
performance measures are: Accuracy = TP+TN

TP+TN+FP+FN , Recall = TP
TP+FN , and Average = (Accuracy +

Recall)/2. Bold values indicate the best performance across all measures

The data is randomly divided into training and testing data. We apply fivefold cross
validation and use an average of the accuracy and recall measures (described below) to
determine the optimal parameters C , ρ, and any kernel inputs. We then train a model
with the full training set and optimal parameters and test on the independent test set.

Table 1 provides summary statistics for these data sets, including the minimum and
maximum eigenvalues of the training similarity matrices. We observe that the Simp-
son are highly indefinite, while the one-sided tangent distance kernel is nearly positive
semidefinite. The spectrum of sigmoid kernels varies greatly across examples because
it is very sensitive to the sigmoid kernel parameters. Table 2 compares accuracy, recall,
and their average for denoise, flip, shift, modified SVM, direct SVM and the indefinite
SVM algorithm described in this work.

Based on the interpretation from Sect. 2.3, Indefinite SVM should be expected to
perform at least as well as denoise; if denoise were a good transformation, then cross-
validation over ρ should choose a high penalty that makes Indefinite SVM and denoise
nearly equivalent. The rank-one update provides more flexibility for the transforma-
tion and similarities concerning data points xi that are easily classified (αi = 0) are
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not modified by the rank-one update. Further interpretation for the specific rank-one
update is not currently known. However, Chen et al. [8] recently proposed spectrum
modifications in a similar manner to Indefinite SVM. Rather than perturb the entire
indefinite similarity matrix, they perturb the spectrum directly allowing improvements
over the denoise as well as flip transformations. They also note that Indefinite SVM
might perform better on sparse kernels because the rank-one update may then allow
inference of hidden relationships.

We observe that Indefinite SVM performs comparably on all USPS examples
(slightly better for the highly indefinite Simpson kernels), which are relatively easy
classification problems. As expected, classification using the tangent distance outper-
forms classification with the Simpson score but, as mentioned above, the Simpson
score is cheaper to compute. We also note that other documented classification results
on this USPS data set perform multi-classification, while here we only perform binary
classification. Classification of the UCI data sets with sigmoid kernels is more difficult
(as demonstrated by lower performance measures). Indefinite SVM here is the only
technique that outperforms in at least one of the measures across all three data sets.

5.2 Generalization with Mercer kernels

Using this time linear and gaussian (both positive semidefinite, i.e. Mercer) kernels
on the USPS data set, we now compare classification performance using regular SVM
and the penalized kernel learning problem (22) of Sect. 4.3, which we call Perturb-
SVM here. We also test these two techniques on positive semidefinite kernels formed
using noisy USPS data sets (created by adding uniformly distributed noise in [−1,1]
to each pixel before normalizing to [0,1]), in which case PerturbSVM can be seen as
optimally denoised support vector machine classification. We again cross-validate on
a training set and test on the same independent group of examples used in the exper-
iments above. Optimal parameters from classification of unperturbed data were used
to train classifiers for perturbed data. Results are summarized in Table 3.

These results show that PerturbSVM performs at least as well in almost all cases.
As expected, noise decreased generalization performance in all experiments. Except
in the USPS-4-6-gaussian example, the value of ρ selected was not the highest pos-
sible for each test where PerturbSVM outperforms SVM in at least one measure; this
implies that the support vectors were perturbed to improve classification. Overall,
when zero or moderate noise is present, PerturbSVM does improve performance over
regular SVM as shown. When too much noise is present, however, (for example, pixel
data with range in [−1, 1] was modified with uniform noise in [−2, 2] before being
normalized to [0, 1]), the performance of both techniques is comparable.

5.3 Convergence

We ran our two algorithms on data sets created by randomly perturbing the four USPS
data sets used above. Average results and standard deviation are displayed in Fig. 1 in
semilog scale (note that the codes were not stopped here and that the target duality gap
improvement is usually much smaller than 10−8). As expected, ACCPM converges
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Table 3 Performance measures for USPS data using linear and gaussian kernels

Data Set Measure Unperturbed Noisy

SVM Perturb SVM SVM Perturb SVM

USPS-3-5-linear Accuracy 96.25 96.12 90.27 93.16

Recall 95.69 95.93 90.00 92.87

Average 95.97 96.03 90.14 93.01

USPS-4-6-linear Accuracy 99.07 99.07 97.39 97.97

Recall 99.10 99.32 97.34 98.13

Average 99.08 99.19 97.36 98.05

USPS-3-5-gaussian Accuracy 97.67 97.54 92.11 93.57

Recall 98.09 97.37 91.27 92.89

Average 97.88 97.46 91.69 93.23

USPS-4-6-gaussian Accuracy 99.18 99.30 98.00 97.99

Recall 99.55 99.55 98.15 98.19

Average 99.37 99.42 98.08 98.09

Unperturbed refers to classification of the original data and Noisy refers to classification of data that is
perturbed by uniform noise. Perturb SVM perturbs the support vectors to improve generalization. How-
ever, performance is lower for both techniques in the presence of high noise. Bold values indicate the best
performance across all measures
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Fig. 1 Convergence plots for ACCPM (left) and projected gradient method (right) on random subsets of
the USPS-SS-3-5 data set (average gap versus iteration number, dashed lines at plus and minus one standard
deviation). ACCPM converges linearly to a higher precision while the gradient projection method converges
faster in the beginning but stalls at a higher precision

much faster (in fact linearly) to a higher precision, while each iteration requires solv-
ing a linear program of size n. The gradient projection method converges faster in the
beginning but stalls at higher precision, however, each iteration only requires a rank
one update on an eigenvalue decomposition.

We finally examine the computing time of IndefiniteSVM using the projected gra-
dient method and ACCPM and compare them with the SIQCLP method of Chen and
Ye [7]. Figure 2 shows total runtime (left) and average iteration runtime (right) for
varying problem dimensions on an example from the USPS data with Simpson kernel.
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Fig. 2 Total time versus dimension (left) and average time per iteration versus dimension (right) using pro-
jected gradient and ACCPM IndefiniteSVM and SIQCLP (only for total time). The number of iterations for
convergence varies from 100 for the smallest dimension to 2,000 for the largest dimension in this example
which uses a Simpson kernel on the USPS 3-5 data

Experiments are averaged over 10 random data subsets and we fix C = 10 with a
tolerance of .1 for the duality gap. For the projected gradient method, increasing ρ

increases the number of iterations to converge; notice that the average time per itera-
tion does not vary over ρ. SIQCLP also requires more iterations to converge for higher
ρ, however, the average iteration time seems to be less for higher ρ, so no clear pattern
is seen when varying ρ. Note that the number of iterations required varies widely
(between 100 and 2,000 iterations in this experiment) as a function of ρ, C , the chosen
kernel and the stepsize.

Results for ACCPM and SIQCLP are shown only up to dimensions 500 and 300,
respectively, because this sufficiently demonstrates that the projected gradient method
is more efficient. ACCPM clearly suffers from the complexity of the analytic center
problem each iteration. However, improvements can be made in the SIQCLP imple-
mentation such as using a regularized version of an efficient MKL solver (e.g. [28])
to solve problem (13) rather than MOSEK. SIQCLP is also useful because it makes a
connection between the indefinite SVM formulation and multiple kernel learning. We
observed from experiments that the duality gap found from SIQCLP is tighter than
the upper bound on the duality gap used for the projected gradient method. This could
potentially be used to create a better stopping condition, however, the complexity to
derive the tighter duality gap (solving regularized MKL) is much higher than that to
compute our current gap (solving a single SVM).

6 Conclusion

We have proposed a technique for support vector machine classification with indefinite
kernels, using a proxy kernel which can be computed explicitly. We also show how
this framework can be used to improve generalization performance with potentially
noisy Mercer kernels, as well as extend it to other kernel methods such as SVR and
one-class support vector machines. We give two provably convergent algorithms for
solving this problem on relatively large data sets. Our initial experiments show that
our method fares quite favorably compared to other techniques handling indefinite
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kernels in the SVM framework and, in the limit, provides a clear interpretation for
some of these heuristics.
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