Math. Prog. Comp. (2013) 5:75-112
DOI 10.1007/s12532-012-0049-9

FULL LENGTH PAPER

Branch-and-cut for separable piecewise linear
optimization and intersection with semi-continuous
constraints

L. R. de Farias Jr. - E. Kozyreff - R. Gupta -
M. Zhao

Received: 13 November 2011 / Accepted: 21 October 2012 / Published online: 8 November 2012
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2012

Abstract We report and analyze the results of our computational testing of branch-
and-cut for piecewise linear optimization using the cutting planes given recently by
Zhao and de Farias. Besides evaluating the performance of the cuts, we evaluate
the effect of formulation on the performance of branch-and-cut. Finally, we report
and analyze results on piecewise linear optimization problems with semi-continuous
constraints.

Keywords Piecewise linear optimization - Mixed-integer programming -
Knapsack problem - Special ordered set - Semi-continuous variable -

Polyhedral method - Branch-and-cut

Mathematics Subject Classification 90

1 Introduction

Piecewise linear optimization (PLO) stands as one of the most frequently used opti-
mization models in practice. It arises in such diverse applications as transportation

I. R. de Farias Jr. (X)) - E. Kozyreff - R. Gupta
Department of Industrial Engineering, Texas Tech University, Lubbock, USA
e-mail: ismael.de-farias @ttu.edu

E. Kozyreff
e-mail: ernee.kozyreff@ttu.edu

R. Gupta
e-mail: rajat.gupta@ttu.edu

M. Zhao

SAS, Cary, USA
e-mail: ming.zhao@sas.com

@ Springer

76 1. R. de Farias Jr. et al.

[1], finance [3,20,24], and supply-chain management [5,6]. It is also often used to
approximate difficult nonlinear programming (NLP) models (see for example [22,25—
28,31]), and to optimize functions that are not defined analytically, e.g. functions
whose values are known only for a number of sample points [23]. In applications,
more often than not, PLO is continuous and separable (for noncontinuous PLO, see
de Farias et al. [14]).

Let n be a positive integer and N = {1, ..., n}. The continuous and separable PLO
is:

minimize Zgj(xj)
JEN
s.it. Ax <b (1)
Xj S [(),a)j],j (S N,

where g; is a continuous piecewise linear function Vj € N. This is the model studied
in this work. Thus, henceforth, unless noted explicitly, PLO will mean continuous and
separable PLO. When all functions g; are convex, PLO can be solved in polynomial
time [15], otherwise it is NP-hard [19].

Typically, in the literature as well as in practice, PLO is formulated using special
ordered sets of type 2 (SOS2).

Definition 1 (Beale and Tomlin [2]) A set of variables {)Ag, ..., A7} is SOS2 when:

at most two variables can be nonzero, and two nonzero variables must be adjacent.

2
O

Specifically, consider the variable x;, j € N, and let 4% =0,d, ..., djT = w;j
be the breakpoints of function g; (i.e. the points where the slope of g; changes plus
the endpoints 0 and w;), where d(/.) << djT. For notational simplicity, we assume
without loss of generality (WLOG) that all functions g; have the same number T + 1
of breakpoints (in this case we may have to add breakpoints at places where the slope
does not change). We write:

T

xj= > dk, (3)
k=0

T

2 M=1 “)

k=0

and
M=0 Vkel{o,....T}). 5)

@ Springer

Branch-and-cut for separable piecewise linear optimization 77

Now, let

Zajxjfb (6)

JEN

be one of the inequalities in (1). Plugging (3) into (6), we obtain:

T T
D Do drk = > > k<o,)

jENT k=0 jeN~— k=0

where a’; = |a,-|dj? Vi e Nk € {0,..., T, Nt = {j € N : a; > 0}, and
N‘:{jeN:otj<0}.N0tethatN+UN_:N,andsinced})<--~<djT,0<
1

a; <--- < ajT Vj € N when a; # 0. By repeating this with all variables x; and all

constraints in (1), we obtain a model on variables)J;. And by adding the constraint

(19,....1]}isS0S2 vjeN, ®)

we obtain the SOS2 model.

Constraint (8) can be dealt with by introducing binary variables as in the “usual”
mixed-integer programming (MIP) approach [7] or the more recent “logarithmic”
(LOG) approach [29,30]; or alternatively through the SOS2 approach [2]. We note
that PLO can also be formulated as in the incremental cost model of Markowitz
and Manne [21]. Theoretically, the incremental cost and the “usual” MIP models are
equivalent with respect to their initial linear programming bounds [18]. Whether, in
practice, they perform with similar efficiency, remains to be tested.

Due to its importance, all main commercial MIP software contain special facilities
for SOS2. Yet, they lack the capability of solving within acceptable computational
time PLO instances of medium to large sizes. One possible reason is their lacking
of separation heuristics for cutting planes that are valid for general PLO, but that are
specific for SOS2 models. Recently, Zhao and de Farias [32] gave several new families
of cutting planes for PLO, some of which define facets under mild conditions (see also
Keha et al. [19] for a previous study. Some of the inequalities in [19] are now special
cases of inequalities in [32]). Here we present a computational study of branch-and-cut
for PLO in which we evaluate the impact on the performance of branch-and-cut of the:

1. inequalities of Zhao and de Farias [32]

2. choice of the “usual” MIP approach, LOG formulation, or SOS2 approach

3. default branch-and-cut facilities (i.e. preprocessing, primal heuristics, and MIP
cutting planes) when an MIP approach is adopted.

Zhao and de Farias [32] also strengthened their inequalities for the case in which
PLO contains semi-continuous variables. A variable x is semi-continuous [8,13] when
x € [0, plU[l,w], where 0 < p < | < w. Semi-continuous variables abound
in applications, including NLP applications that are approximated as PLO, see for
example [26,27,31]. Additionally, semi-continuous variables are present in models

@ Springer

78 1. R. de Farias Jr. et al.

where PLO arises “naturally” (i.e. not as an approximation), see for example [24].
Here, in addition to our analysis of branch-and-cut for PLO, we analyze PLO with
semi-continuous variables.

The remainder of the paper is organized as follows. In Sect. 2 we present assump-
tions, notation, and the inequalities of Zhao and de Farias [32] that are analyzed in this
work. In Sect. 3 we give their separation heuristics. In Sect. 4 we describe the plat-
form used for computation, the instances tested, and the specific tests we conducted.
In Sect. 5 we give results on instances of transshipment with concave piecewise linear
cost functions. In Sect. 6 we give results on instances of transportation with concave
piecewise linear cost functions. In Sect. 7 we present results for PLO with functions
that contain many breakpoints, i.e. with large SOS2’s. In Sect. 8 we give results on PLO
with semi-continuous variables. Finally, in Sect. 9 we give directions for continued
research.

2 Valid inequalities

Our cutting plane strategy follows that pioneered by Crowder et al. [4] for O—1 pro-
gramming, whose success carries over to PLO, as it was first demonstrated by Keha
et al. [19]. Specifically, we use as cuts inequalities valid for a knapsack PLO relax-
ation of PLO, defined by (4), (5), (7), and (8), or equivalently by a single inequality
(6).

Because we focus on a single inequality (6), we assume «; # 0V j € N. Note that
in this case, N becomes {j € N : aj > 0}. Also, because it is easier to study the
inequalities valid for a polyhedron if it is full-dimensional, we proceed as in Keha et
al. [19]: denoting K = {1, ..., T}, we project out variables 20 from the formulation
Vj € N, and we replace constraints (4) and the SOS2 constraints with

Sk <1 ©)

jekK
and SOS2/, respectively, where SOS2’ is defined as:

Definition 2 (Kehaetal. [19]) The set{x}., . AJT}is SOS?2' ifitis SOS2, and x’; >0
k
fork>1= 2 cxr; =1 O

Now, we rewrite (7) as

IDITTED IP NS 10

JENT kek jEN— kek
Our polyhedron of interest is P = conv(S), where
S = {» e W' : i satisfies (5), (9), (10), and SOS2'Vj € N}.

Next, we give the inequalities for P derived in Zhao and de Farias [32] that we
tested computationally. They are two families of lifted convexity inequalities and three

@ Springer

Branch-and-cut for separable piecewise linear optimization 79

families of lifted cover inequalities. Additionally, we tested the extensions of the lifted
convexity inequalities and two of the lifted cover inequalities for when there are semi-
continuous constraints that were derived in Zhao and de Farias [32]. For the remainder
of the paper, we adopt the convention that when k > [, zljzk xj =0, where the x;’s
are real numbers.

2.1 Valid inequalities for PLO
2.1.1 Lifted convexity inequalities

Below we give the first family of lifted convexity inequalities.

Theorem 1 (Zhao and de Farias [32]) Let j € N+,N1_ C N ,and b = b +
ZieNr al.’"i, where m; € K Vi € N, . Lets € K be such thataj <V, I =1{i¢€

—{j}: aj'. +aiT > b'}, and k; = min{k € K : a; —l—al{C > D'} Vi € I. Suppose
that I # . Then,

-1
EONTIED IS VD

J k=1 iel k=max{l,k;—1}
B DT D W L an
ieNl’k:mH'l ieN——N; keK]

is valid for P, where

ki—1 ki
. , al+a' —=b al+a’ -0
(af o) € [(0, 0),(o L Viel

J J
with k; > 1 and a; +afi_1 <PV, (12)
k.
. . a’l+a’ —b .
(af’_l,af’) = (O, %) Vi € Iwithk; > 1 anda‘; —l—af’_l =0,
a’.
j
af =0 Vielwithk =1,
. aj'- +a{‘ —b
af =~ Vielwihk>k,
aj
and
k m;
gk = 4 4
1 a_&
J
O

@ Springer

80 1. R. de Farias Jr. et al.

Example 1 Let INT| = [N"| =2,T =3,d} =2,d} =6,d} =8,d) =5,d3 =
9,d; =20,d} =4,d2 =6,d] =8,d} =2,d} =5,d; =8,a1 =ap = 1,03 =
o4 = —1, and (10) be

0]+ 627 4 843 + 500 + 9243 + 2043 — 40l —623 843 — 24 — 515 — 843 < 10.
Letj=1,s=1and N| =0. Then b’ = 10,1 = {2}, ky =2 and (11) is

20] 4207 + 247 — 32 4+ A3 + 1243 — 4A) — 603 — 843 — 24 — 5AF —8AF < 2.
This inequality defines a facet of P. O

We now give the second family of lifted convexity inequalities.

Theorem 2 (Zhao and de Farias [32]) Let j € NT, N € N7, and b = b+
ZieNraim", where mj € K Vi € N[. Lets € K —{1}and I = {i € N*T — {j} :
aj-_l —l—aiT > b'}. Suppose that I # (. Let k; = min{k € K : a‘;_l —i—a{c >b}iel,
and L = {i € I : a‘; +af"7] > b and k; > 1}. Suppose that L # @, and let

ap = min{af"_1 21 € LY. Then,

s—1 T T
;yfkf; +kZA§ +3°> afak
= =s

ieL k=k;
T
=D D B = D> D vk (13)
ieN| k=mi+1 ieN——N; kek

is valid for P, where

k
k_ % —aL

v Vi e L withk > ki,
ak — ™
Bt = -L— Vie Ny withk >m; +1,
b’—aL
and
ak
vk = —t— Vie N"U{j} - Ny withk € K.
b’—aL
]
Example 2 Let [N| = INT| = 3,T =3,d}! =2,d? = 6,d} =8,di =3,d3 =
7,d3 =10,di =5,d3 =7,d; =9,01 = ar = a3 = 1, and (10) be
201+ 607 + 823 + 32 4+ 723 4+ 1043 4 501 + 743 + 943 < 10. (14)

@ Springer

Branch-and-cut for separable piecewise linear optimization 81

Letj=1lands =2.Then = {2,3}, ko = k3 =3,L ={2,3},b' = 10,anda;, = 7.
The following inequality defines a facet of P:

2 2
§A}+x%+/\§+x§+§)\§g 1.

2.1.2 Lifted cover inequalities

We now give the three families of lifted cover inequalities derived in Zhao and de
Farias [32] that we tested computationally. Given j € N, we denote

k_ k k-1 _ 1_ 1
uj; =a; —a; Vk e K — {1} and u; =aj.

We now assume that N = N, Later in this section this assumption will be lifted.

Definition 3 (Kehaetal. [19]) Let C € N and/; € {2,..., T}V € C be such that

>al=b+p (15)

jeC
with p > 0. The set C is a cover. O

We note that the cover is not defined just by the elements of C but also by the /;’s.
So, in principle, the notation for a cover should specify jointly C and the /;’s. In what
follows, however, in no occasion will two different covers be considered at the same
time. Because there is no risk of confusion, to simplify notation, we will denote the
cover by C, with the /;’s understood by the particular context. For the remainder of
the paper C will denote a cover.

We now give the first family of lifted cover inequalities.

Theorem 3 (Zhao and de Farias [32]) Let C| and C» be two disjoint subsets of C such
that C = C1 U Cyp, andlj > 2Vj € Cy. Then,

T T
;-2 i1 X -1 k
D il BT D D T+ DM) <1ci=1 e
k=1;

jeCy k=l; jeCr

is valid for P, where

0 : 4
aj:min 0, ———— ¢, ﬁj: . and ijmin{O,ﬁj}.
0

O

@ Springer

82 1. R. de Farias Jr. et al.

Example3LetN—{123}T 3,di = 1,d} =3,d} =4,d) = 1,d; =
3d2_4d3—2d3—4d3—9a1—a2—a3—1and(lO)be

A4 3AT 4403 AL 33 403 +2ad 423 4923 < 10.
Let C ={1,2,3),ly =l = 3,13 =2,Cy = {1, 2}, and C; = {3}. We have that

1 1 1 1
—EAHEAHA?—5/\;+§x§+/\3+x§+x§52 (17)

is valid for P. It cuts off the point A3 = 2, A3 = kz =1, and 2 =0 otherwise, which
is a vertex of the feasible set of the linear programming (LP) relaxation (obtained by
dropping the SOS2’ constraints). O

Next, we give the second family of lifted cover inequalities.
Theorem 4 (Zhao and de Farias [32]) Letac = max{all.i VieC } C={jeN-C:
ajT >ac cmdajT_1 > ac—p}, andt; = minfk : af. > ac andaf. >ac—p}Vj e C.

Suppose that C # §. The lifted cover inequality

S Zx" +ZZA"<|C|—1 (18)

jeC jeC k=tj

is valid for P, where the y;’s are as in Theorem 3. O
Example 4 Let INT| =4, N~ =0, T =3,d] =2,d* =6,d} =8,d =3,d>
7.d3 =10,di =4,d; =8,d; =10,d} =5,d; =7.d] =901 =0op = o3 =
o4 = 1, and (10) be

26234843 4301 + 70341023 + 42 +822+ 1003 +50) +7203+923 < 10.
19)

We take C = {1,2}and/; = I, = 2. Then, C € {3,4}and 13 = 14 = 2. The inequality
—1x1+A2+/\3—lxl+/\2+x3+x +AB+A2+A <1 (20)
3/ 1 17 3% 2 2 3 4 4=

defines a facet of P. O
Now we drop the assumption that N~ = §.

Definition 4 (Kehaetal. [19])LetCT C NT,C~ CN~,2<[; <TVjeCt 1<
lj<T—-1VjeC ,andC=CTUC™.If

S-Sl bes

ject jeCc—

with p > 0, C is a generalized cover. |

@ Springer

Branch-and-cut for separable piecewise linear optimization 83

We give below the third family of lifted cover inequalities.

Theorem 5 (Zhao and de Farias [32]) Let C be a generalized cover. The inequality

T
>, “JAI/_ + Bjr _+Z*k +2 VJM +ZA]§
k:lj

jeCq jeCs

N R At Z W) <jct -1 Q1)

jeN- k=1j+2

is valid for P, where C1 and C, are disjoint, CT = C1 U Cy,lj >2VjeCylj
0Vje N~ —C™,aj, Bj,) are given as in Theorem 3, and

[j+1
u’!

T; = max ,
0

]

Example 1 (Continued) We let C = {1,2,3} with CT = {1,2},C~ = (3},]; =
3,b =2,and 3 = 2. We also let C; = {1} and C, = {2}, and we have that [4 = 0. It
then follows that

S = -3 el o -l Al Al <
is valid for P. It cuts off the point k3 =12 =

5 = 3, A3 =1, and Ak = 0 otherwise,
which is a vertex of the feasible set of the LP relaxation. O

2.2 Valid inequalities for PLO with semi-continuous variables

Let x be a semi-continuous variable, i.e. x € [0, p]U [[, w], where 0 < p <[< w.
For simplicity of notation, and WLOG, we assume that the forbidden interval (p, /)
is determined by two adjacent breakpoints of x (to keep the number of breakpoints
for each variable x; the same, as assumed earlier, one may add additional breakpoints
in a non-forbidden interval). Specifically, let i € N and the breakpoints of x; be
dl.0(= O),...,df(:a),-). Then, p = dl.k_1 and [= d{‘ for some k € K. Also for
simplicity of notation, and WLOG, we assume that all variables x;, j € N, are semi-
continuous (in this case we may have to allow p = [for some variables, or equivalently
that the forbidden interval (p, [) is empty for these variables). We denote the index

. . . . k¥—1
k € K that defines the semi-continuous constraint of x; as k;‘ ,le.x; € 0,4 U

[df ", w;]; and we denote the PLO polytope with semi-continuous constraints Pgc.
Zhao and de Farias [32] strengthened inequalities (11), (13), (16), and (18) to
account for when PLO has semi-continuous constraints. We now give these inequal-
ities, which we tested computationally. We call the inequalities collectively SC-PLO
cuts.
Below we give the first SC-PLO cut.

@ Springer

84 1. R. de Farias Jr. et al.

Theorem 6 (Zhao and de Farias [32]) Ler j € N*,N] € N—, and b’
zieNl_ airn", where m; € K Vi € N{ . Lets € K be such that aj- < b, I

- {j}: a‘;—i—aiT > b'}, and k; = min{k € K : aj—i—af‘ > b} Vi € I. Let

*={i € I 1k = k;}. Suppose that I # (). Then,

= T T T

kyk 4 Nk xk oy k kyk
FOILLEDICEDIDILIC RSP VD I
4= =s iel* k=k; iel—I* k=max{l,k;—1}

T
kyk k
S WTEED M
ieN| k=mi+1 ieN-—N; kek “

is valid for Psc, where

. aj.—l—af—b’
af=—L "L — Viel*keKk,

K
a’.
J

L ki-l Lk
. ‘ al+a' —=b al+a’ -
(afi " o) € {(0, 0),(o AL Viel—I*

J J
with k; > 1 and a’ +af"_1 <DV,

ki ’
_ , at+a' —b .
(ozll.{’_l,ozf’) = (O, %) VieI-TI*"withk; > 1 anda‘;—i—af’ !

a.
J

af =0 Viel—1I*withk =1,

. aj+af‘—b’

of = ————— Viel—I"withk > k;,

a’
J

and

Example 4 (Continued) Suppose that x; € {0} U [2,8],x» € [0,3] U [7, 10],
x3 € [0,8] U {10}, and x4 € {0} U [5, 9]. We then have that k{ = 1, k3 =2, k3 =3,

and kj = 1. Then,

1 1 5
a2+ ai<d
4+2 4+6 4 =

2
—x§+/\§+6

1
-x§+/\§+3

1 1 2 3
FH A A+

is valid for Pgc. Inequality (23) cuts off AZ =11l =

4= 5, and)Lk = 0 otherwise, which

is a vertex of the feasible set of the LP relaxation that satlsﬁes the SOS2’ constraints,

but not semi-continuous, corresponding to x; = 6, x = x3 = 0, and x4 = 4.

@ Springer

Branch-and-cut for separable piecewise linear optimization 85

We now give the second SC-PLO cut.

Theorem 7 (Zhao and de Farias [32]) Let j € N+,N]_ C N ,and b = b+
ZiENl_aimi’ where m; € K Vi € N . Lets € K —{l}and I = {i € N* — {j} :

ji*l —}—aiT > b'}. Suppose that I # @. Let k; = min{k € K : aj'.fl +af >b'},i el
Denote I* ={i e I : kj =k} and L = {i € I—I*:aj?—i—afi_l > b and k; > 1}.

Suppose that I* # (. Then,

a

s—1 T T
PR R RIS I
k=1 k=s

iel*UL k=k;

T
=0 DB = D Diviar=a (24)
ieN; k=mi+1 ieN——Nj k€K

is valid for Psc, where

. d—a .
ok = 2 Vi e I"ULwithk > k;,
i b —at
J
k m;
kG T e NS withk > 1
ﬂi—m i €N withk>m; +1,
J
and
k af
V! :b/—la‘v. Vie N"U{j} — N, withk € K.
J

O

Example 2 (Continued) Suppose that x; € {0} U [2,8],x, € {0} U [3, 10], and
x3 € {0} U[S, 9]. We then have that k] = k3 = k3 = 1. Then,

1)\%_,_%)\%4_)\?4_E)\§+§A%+A%+§)\é+§)\%+zkg<1 (25)
4 4 8 8 8 8 8 °

is valid for Pgc. Inequality (25) cuts off X? =1,)Lé = %, and)J; = 0 otherwise, which
is a vertex of the feasible set of the LP relaxation that satisfies the SOS2’ constraints,
but not semi-continuous, corresponding to x; = 2, x, = 0, and x3 = 2. O

Finally, we give inequalities (16) and (18) strengthened for when there are semi-
continuous constraints.

Definition 5 Let C C Nand/; € {2,...,T}U {k;f} Vj € C be such that

Za§j=b+p

jeC

@ Springer

86 1. R. de Farias Jr. et al.

with p > 0. The set C is a semi-continuous cover. O
We now give the third and fourth SC-PLO cuts.

Theorem 8 (Zhao and de Farias [32]) Let C be a semi-continuous cover, C1, Ca, 1},
aj, Bj, and y; be as in Theorem 3. Let C; = {j € C : lj = k;‘}. Then,

T T
DI CEYREY TR D WA B ID I

JjeC k=l; JEC3 k=l
[
+ 2 |wr T F M) =101 (26)
jECz—C; k:lj
is valid for Psc. O

Theorem 9 (Zhao and de Farias [32]) Let C b_e a semi-continuous cover, C* =
{jeC:l :k;f},ac :max{afi :VieClL,C={je N—C:ajT > ac and
ajT_l > ac — p}, and t; = min{k : a;‘. > ac and af_l

that C # (. Then,

> ac — p} Vj € C. Suppose

T
PP I I FOrv +Zﬂ‘ +ZZA"<|G|—1 @7

jeCrk=l; jeCc—c* k=1; jeC k=t;
is valid for Psc. O
Example 4 (Continued) Suppose that x; € {0} U [2,8],x, € {0} U [3,10],

x3 € {0} U[4, 10], and x4 € {0} U[5, 9]. We then have that k] = k3 = k5 =k} = 1.
From Theorem 8,

2 AT H A A A <
is valid for Psc and cuts off the point k3 1 A% = 2, kk = 0 otherwise, which
is a vertex of the feasible set of the LP relaxation that satlsﬁes SOS2’, but not semi-

continuous, corresponding to x; = 8, x = x4 = 0, and x3 = 2.
From Theorem 9,

MAM+A A+ +A3 a2 +A3+A3 <2
is valid for Pgc and cuts off the pomtkl = Al =1)‘411 = S,Ak = 0, which is a vertex

of the feasible set of the LP relaxation that satisfies SOS2’, but not semi-continuous,
corresponding to x; = 2, xp = 0,x3 =4, and x4 = 4. |

@ Springer

Branch-and-cut for separable piecewise linear optimization 87

3 Separation heuristics

We conjecture that the separation problems for the inequalities given in the previous
section are intractable. This is due to the inequalities’ “complicated appearance”. So
we give (rather simple) heuristics for the separation problems. Specifically, we give
separation heuristics for inequalities (11), (13), (16), (18), and (21). [Because the
separation heuristics for (22), (24), (26), and (27) are virtually the same as those for
(11), (13), (16), and (18), respectively, we omit them].

For the remainder of this section we let A be the optimal LP relaxation solution just
obtained. Let j € N and suppose that)7; > 0 for some k € K. We let

€ =min{keK:5J} > 0}
and
¢ =maxi{k € K :)7; > 0}.

The heuristics consist in building inequalities of the respective families that have
good chances of being violated by A. The constraints (10) from which we derive the
cuts are the ones that are satisfied at equality by A, and we repeat the procedure below
for each one of these constraints.

Inequality (11) When N~ #), we take, for simplicity, N;” = §. So the inequality
is determined by choosing j and s, and, when (12) holds, one of the two alternative
values for (ozf" _1, af"). The choice between the two alternatives is made as follows:
foreveryi € I,if af"_l):f"_l + af")_Lf" < 0, we take (af"_l,a{c") = (0, 0), otherwise
we choose the other option.

For every j € N, we test whether A violates (11) with s = 1 and, in case € > 1,
we also test whether A violates (11) with s = ¢;. If it does, we add the inequality to
the cut pool.

Inequality (13) Again, we take N| = {) when N~ # {, so the inequality is
determined by choosing j and s. Forevery j € Nands = 2,...,T — 1, we test
whether A violates (13) and, if it does, we add the inequality to the cut pool.

Inequality (16) For every j € N, we construct covers as follows: C = {j} U {i €
N :i# jande > 2}, with2 < [; < €;,l; = ¢, and provided Zjecaj:’ > b. We
let

C = jeC:ejz3anda;j_l>b— Z ai’ ¢,
ieC—{j}

and Cy» = C — Cy. We then test whether A violates (16) and, if it does, we add the
inequality to the cut pool.

Inequality (18) We construct covers C as in the previous case, and C as in Theorem 4.
We then test whether A violates (18) and, if it does, we add the inequality to the cut
pool.

@ Springer

88 1. R. de Farias Jr. et al.

Inequality (21) For every j € N™T, we construct generalized covers as follows:
Ct={jjUfie Nt :i# jande > 2}, with2 <lj <¢jand; = ¢,C~ =
(i € N": ¢y = 1), withl; = ¢, and provided 3" ;o a — ;e alf > b. We let

1 .
C) = jEC+:ej23anda;’ >b— Z af’ ,
ieCt—{j}

and C; = CtT — C;. We then test whether X violates (21) and, if it does, we add the
inequality to the cut pool.

In all of the above procedures, a minimum violation had to be met by A in order
for an inequality to be added to the cut pool. This absolute value was chosen based
on preliminary tests, and differed depending on the type of problem tested. For the
transshipment instances, the minimum violation was 0.3, and for the transportation
instances it was 0.05. Starting in Sect. 4, we will see that GUROBI filters the user cuts
before adding them to the cutpool. Our cut violation filter is done before that, and is
implemented in our separation routine. We performed separation at every node of the
enumeration tree in all instances we tested.

4 Platform, problems and instances, and tests conducted
4.1 Platform

We performed our computational tests in the Texas Tech High Performance Computing
Center’s Intel Xeon E5450 3.0 GHz CPU with 16 GB RAM nodes (two CPUs on a
single board for each node) [17]. We used the callable libraries of CPLEX 12.2.0.0 and
GUROBI 4.0.0. We ran both on a single thread. The computational times and number
of branch-and-bound nodes for CPLEX and GUROBI were different in all instances,
but in almost all cases they led to the same conclusions. For this reason, we report the
results of GUROBI only. In the small number of cases in which CPLEX and GUROBI
disagree we report the results of both.

4.2 Problems

We tested branch-and-cut with the inequalities of Sect. 2.1 on difficult and large
instances of the transshipment problem:

minimize Z Z gij(xij)
ieM jeM—{i}

S.t. Z (xij—xj,-)zbi, ieM
jeM—{i}
xij >0, i,jeM,i#],

where M = {1, ...,m} is the set of nodes of the network and g;; is a continuous
concave piecewise linear function Vi, j € M. We assume WLOG that Zi embi =0.

@ Springer

Branch-and-cut for separable piecewise linear optimization

89

We also tested the cuts on difficult and large instances of the transportation problem:

minimize Z Z 8ij (xij)

iel jeJ

s.t. Z)Cij =o0;, i€l
jeJ
injzaj, jelJ
iel

xiij, iEI,jGJ,

where [is the set of supply nodes, J the set of demand nodes, o; the supply of node

i, and §; the demand of node j. We assume WLOG that >,

0; = X ;e 8. Addi-

tionally, we tested the largest instances of Vielma and Nemhauser [30], which are
transportation instances, but much smaller than ours. Finally, we tested the inequal-
ities of Sect. 2.2 on instances of the transportation problem with semi-continuous

constraints.

In terms of the A variables, the transshipment model becomes:

minimize E E E Cl] lj

S.t.

ieM jeM—{i} keK

Z Zatk/)‘ﬁ Z Zaﬂ =

jeM—{i} keK jeM—{i} keK
DSl L eMi#]
keK

M;=0, i jeM,i#jkek

Mjoo M) isS0OS2', i jeM.i # j

and the transportation model becomes:

minimize E E E C’J l]

iel jeJ kekK

sty ala =0 iel
jelJ

Zau ij =0, J&J

iel

D1 ieljel
kekK
Aij=0, iel,jel kekK

LT

bi, ieM (28)

(29)

(30)

M;)isS0S2', iel jel.

@ Springer

920 1. R. de Farias Jr. et al.

For both transshipment and transportation the afj ’s are the values of the breakpoints
and are positive. Because N~ # ¢ for transshipment, the inequalities used for the
transshipment instances are (11), (13), and (21). On the other hand, since N~ = ¢ for
transportation, the inequalities used for the transportation instances are (11), (13), (16)
and (18). For transportation with semi-continuous constraints we took k' = 1Vi € N
[in this case, of course, the inequalities are (22), (24), (26), and (27)].

Note that because they are equality constraints, all constraints (28) for transship-
ment, and (29) and (30) for transportation, will be used for cut separation in all attempts
to cut off an optimal solution to the LP relaxation that does not satisfy SOS2’.

4.3 Instances

In part we followed [19] for generating our instances.

Transshipment We took m € {15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100} and T €
{3,4,5,6, 10, 15, 20, 25, 30}. So the instances we tested are considerably larger than
those of [19], and so was the range of values of 7.

Each node of the network is chosen to be supply, demand, or transshipment with
probability %, except for node m, which, as we show next, will become supply, demand,
or transshipment to balance the network, i.e. to guarantee » ;,,b; = 0. For i €
{1,...,m — 1}, we choose |b;| to be an integer uniformly distributed between 1 and
10T if itis a supply or demand node (positive if supply, negative if demand), and O if it
is a transshipment node. As for node m, b,, = — Zl’.”:_ll b;. Node m is supply, demand,
or transshipment according to whether by, is positive, negative, or 0, respectively.

Regarding the breakpoints, ailj is an integer uniformly distributed between 1 and

10. For afj withk € {2, ..., T},

k

k-1 k
a . —aij =+ u;

ij ij

where uf.‘j is an integer uniformly distributed between 1 and 10.

Finally,

oy =cT 5T -k +Cf,
where cil, =5T-1)+ C;‘j, and ij is an integer uniformly distributed between 1
and 5. This way, the objective function is nondecreasing concave.

Transportation We took T € {5, 10, 20, 30, 32, 40, 80, 120}. So we tested a much
wider range of values of T than [19]. For transportation with semi-continuous con-
straints we took T € {5, 10}. We took |J| € {10, 20, 50, 100, 200, 300, 400} and
[I] € {10, 25, 50, 100}. So the instances we tested are considerably larger than those
of [19]. For transportation with semi-continuous constraints we took | /| € {5, 7, 8, 10}
and |J| € {14, 16, 20}. In either case (with or without semi-continuous constraints)
1] < |J].

Let oyin =T + 1 and

21J(T + 1)
Omax = LT—T—lJ

@ Springer

Branch-and-cut for separable piecewise linear optimization 91

Initially, we take for o;,i € I, an integer uniformly distributed between o,,;,, and
Omax- Likewise, let i, = T + 1 and 8,4 = T + 20. Initially, we take for §;, j € J,
an integer uniformly distributed between 8,,;,, and &4 -

If > ;c;0i = > ic; 8, the initial values for o; and §; will be their final values.
Now, suppose that > ;c;0i > > ;c;8;. We then take the initial values of the o;’s
to be their final values and adjust the values of the §;’s. The adjustment is made by
adding 1 unit to the values of 81, 83, ... in this order until > ;_; 0; = Zjej ;. If,
after adding one unit to the value 8|7 we still have >, ., 0; > > ., §;, we repeat the
process until 3, 0i = 2 i, 8;.

If, on the other hand, 3°;c; 0i < >, 8;, we take the initial values of the §;’s to
be their final values and adjust the values of the o;’s as described above.

For each variable x;; we take alg = min{o;, §;}. We obtain the other breakpoints

al{‘j, k € K — {T}, in two steps. First, we break the interval [1, ag

k—1 T-1 :
[plo]v p,'lj], ey [P,] > P,kj], cees [17,] , [75], with p?j = 1 and pz = (15 Then, we

jeJ

] into subintervals

choose afj, k € K — {T}, to be a number between pl].‘]f1 and pf‘] The reason for
this is to space the breakpoints more evenly, which in our initial computational tests
produced harder instances. Now, for k € K — {T'}, p{.‘j =1+ Pl.];., where Pi];. is an
integer uniformly distributed between pfj_l and ag —T+k—1;and al]fj, ke K—(T},
is an integer uniformly distributed between pfj_l and pf.‘j — 1. Finally, cf.‘j is same as
in the transshipment instances.

4.4 Tests conducted

We evaluate the performance of GUROBI on the piecewise linear transshipment and
transportation instances with and without the addition of PLO cuts. In the latter case
we consider, separately, the problem with and without semi-continuous constraints.
We examine how much preprocessing, primal heuristics, and cutting planes influence
the number of enumeration nodes and computational time. In other words, we evaluate
GUROBI with and without PLO cuts, and:

— preprocessing, primal heuristics, and GUROBI cuts off, which we call branch-
and-bound setting

— precisely one of preprocessing, primal heuristics, or GUROBI cuts on (and the
other two off)

— default setting.

Depending on the results, we performed additional tests. For example, when
GUROBI cuts appeared to be relevant, we tried to identify which ones are the most
relevant. Also, we minded the GUROBI parameters. The most important example is
the addition of user cuts to the cutpool. GUROBI filters the user cuts before adding
them to the cutpool, and as a result sometimes only a small fraction of them are actu-
ally used. We tuned parameters to see when using more cuts than allowed by default
would lead to a better performance. All parameter tuning will be explicitly mentioned.
To identify which formulation performs best, we conducted all tests above with the
LOG, MIP, and SOS2 formulations.

@ Springer

92 1. R. de Farias Jr. et al.

We note that the difference between the optimal value of the instances and the
optimal value of their LP relaxations is extremely small. For this reason, we do not
report the optimal values or the integrality gaps of the instances. We note that root node
gap improvement is a good indicator of the quality of cuts. However, extremely small
root node gap is typical of PLO, see for example [9,10,12,19], and for this reason we
rely solely on number of nodes and computational time for assessing branch-and-cut
strategies, particularly cut efficiency.

Finally, due to limited space available for publishing tables in the journal, we were
not able to include in this report the tables that give the number of cutting planes,
both PLO and MIP default cuts of CPLEX and GUROBI. We refer to [11] for such
information.

5 Computational results for transshipment instances

We tested 85 piecewise linear transshipment instances. The instances can be grouped
into 17 sets with same number m of nodes and same value of 7. Because prelimi-
nary tests indicated these instances to be extremely difficult, we allowed for a maxi-
mum computational time of 7,200 seconds of CPU. Here, in most cases, turning the
“Aggressive MIP Cuts” option on led to a better performance than default or the “Very
Aggressive MIP Cuts” option. Therefore, we report on this option. For the remainder
of this section, default refers to GUROBI’s default setting, except for “Aggressive MIP
Cuts” on.

In Tables 1, 2, and 3 we compare the average solution time and the number of
instances solved to proven optimality, and in Tables 4, 5, and 6 the average number of
enumeration nodes, for GUROBI in: default setting; branch-and-bound (henceforth
denoted B&B in the tables); default with PLO cuts (11), (13), and (21) added; and
branch-and-bound with (11), (13), and (21) added.

In all tables each entry refers to 5 instances. We computed both arithmetic and
geometric averages, but because they led to the same conclusions, we report only the
arithmetic averages. Tables 1 and 4 give results for the LOG formulation, Tables 2 and
5 for the MIP formulation, and Tables 3 and 6 for the SOS2 approach. In Tables 1, 2,
3,4, 5 and 6, as well as in the other tables where it appears, “%Red.” is percentage
reduction relative to the default setting. The GUROBI default MIP cutting planes
separated (in the “usual” MIP and LOG formulations) were implied bounds, cover,
flow cover, Gomory, and MIR.

The impact of PLO cuts both on computational time and number of enumeration
nodes was enormous (cf. Tables 1, 2, 3, 4, 5, 6, respectively). Out of the 85 instances
tested, GUROBI in default setting was able to solve to proven optimality only 44
instances (52 %), as opposed to 74 (87 %) with PLO cuts, using the LOG model; 29
(34 %), as opposed to 69 (81 %), using the MIP model; and 35 (41 %), as opposed to 68
(80 %), using the SOS2 approach. The average reduction from default in computational
time by adding PLO cuts was 63 % with the LOG model; 60 % with the MIP model; and
59 % with the SOS2 approach (cf. Tables 1, 2, 3). The average reduction from default
in the number of enumeration nodes by adding PLO cuts was 98 % with the LOG and
MIP models, and 99 % with the SOS2 approach (cf. Tables 4, 5, 6). In summary, the
use of PLO cuts improved our ability to solve the instances tremendously, not only

@ Springer

Branch-and-cut for separable piecewise linear optimization 93

Table 1 Average solution time and # of instances solved for transshipment with the LOG model

m.T Default B&B Def. + PLO cuts B&B + PLO cuts

Time #Sol. Time %Red. #Sol. Time %Red. #Sol. Time %Red. #Sol.

15.20 19 5 16 158 5 22 —-158 5 34 -789 5
15.25 49 5 26 469 5 23 531 5 32 347 5
15.30 26 5 17 346 5 46 =769 5 43 —-654 5
20.20 208 5 117 438 5 44 788 5 39 81.3 5
25.15 1,617 4 853 472 5 134 917 5 142 912 5
25.20 2,377 4 2,426 —2.1 4 194 91.8 5 207 913 5
30.6 1,854 5 1,074 421 5 81 956 5 59 96.8 5
30.10 3,287 3 2,844 135 4 119 9.4 5 134 959 5
30.15 3,325 3 3,142 55 3 299 910 5 358 892 5
40.10 5,089 2 5,384 58 2 525 89.7 5 675 86.7 5
50.6 7,200 0O 7,078 1.7 1 872 879 5 1,733 759 4
60.4 6,685 1 7,200 =77 O 708 894 5 1,134 8.0 5
70.3 5772 2 7,200 —-247 O 289 950 5 292 949 5
70.5 7,200 0 7,200 00 O 3,133 56.5 4 3,420 525 3
80.5 7,200 0 7,200 00 O 4,949 313 4 6,079 156 1
90.5 7,200 0 7,200 0.0 O 6,160 144 1 6,766 60 1
100.5 7,200 0 7,200 00 O 7,200 00 O 7,200 0.0 O
Average 3,900 2.6 3,893 02 26 1,459 62.6 4.4 1,667 572 4.1
Total 66,308 44 66,177 0.2 44 24,798 62.6 74 28,347 572 69

by reducing their computational time and number of enumeration nodes, but also by
solving many instances that GUROBI could not solve without them.

Even on “Aggressive MIP Cuts” mode, GUROBI added to the cutpool only 8 % of
the PLO cuts separated for LOG in default setting and 6 % in branch-and-bound; 8 %
for MIP in default setting and 7 % in branch-and-bound; 9 % for SOS2 in default setting
and 7 % in branch-and-bound. CPLEX, on the other hand, added the great majority
of the PLO cuts separated. As expected, the percentage reduction in the number of
enumeration nodes due to PLO cuts was greater with CPLEX than GUROBI. However,
the percentage reduction in computational time was greater with GUROBI. GUROBI
filters out cuts that are “relatively similar” to cuts already in the cutpool (e.g. cutting
planes for which the angle between their normal vectors is smaller than a certain
amount [16]). Obviously several factors may be involved here. But because the cuts
were so efficient in reducing computational time and number of enumeration nodes,
we conjecture that the positive impact of the filter is due to the elimination of “similar”
cuts, rather than inefficient cuts.

We now turn our attention to the impact of the branch-and-cut features present in
GUROBI default (preprocessing, primal heuristics, and MIP cutting planes) on the
number of enumeration nodes and computational time for the instances. First we note
that of these features, the only ones present in the SOS2 approach of GUROBI are
preprocessing and primal heuristics.

@ Springer

94 1. R. de Farias Jr. et al.

Table 2 Average solution time and # of instances solved for transshipment with the MIP model

m.T Default B&B Def. + PLO cuts B&B + PLO cuts

Time #Sol. Time %Red. #Sol. Time %Red. #Sol. Time %Red. #Sol.

15.20 126 5 139 —-103 5 65 484 5 39 69.0 5
15.25 257 5 261 —16 5 106 58.8 5 59 710 5
15.30 1,435 5 864 398 5 147 89.8 5 114 92.1 5
20.20 720 5 814 —13.1 5 93 87.1 5 64 91.1 5
25.15 5,651 2 3,933 304 3 578 89.8 5 375 934 5
25.20 4,977 2 4,921 LT 2 564 88.7 5 417 91.6 5
30.6 5,107 2 4,539 1.1 2 198 96.1 5 98 98.1 5
30.10 5,611 2 5770 —-28 1 335 94.0 5 283 95.0 5
30.15 5874 1 5,889 03 1 2,121 63.9 5 1,042 823 5
40.10 7,200 O 6,887 43 1 2,550 64.6 5 1,309 81.8 5
50.6 7,200 O 7,200 00 O 2,167 69.9 4 1,978 725 4
60.4 7,200 O 7,200 00 O 1,530 78.8 5 1,137 84.2 5
70.3 7,200 O 7,200 00 O 485 933 5 452 937 5
70.5 7,200 O 7,200 00 O 3,639 495 3 3,568 50.4 3
80.5 7,200 O 7,200 00 O 6,131 14.8 1 5,908 17.9 2
90.5 7,200 O 7,200 00 O 6,877 4.5 1 6,951 35 1
100.5 7,200 O 7,200 00 O 7,200 0.0 0 7,200 0.0 0
Average 5,139 1.7 4,966 34 1.8 2,046 60.2 4.1 1,823 645 4.1
Total 87,358 29 84,417 34 30 34,786 60.2 69 30,994 645 70

The number of nodes and computational time for LOG, MIP, and SOS2 when only
preprocessing is on or when only primal heuristics is on is almost the same as branch-
and-bound. So, of these alternatives, we only report the results for branch-and-bound.
On the other hand, the results for when only the MIP cuts are on (for the LOG and MIP
formulations) are almost the same as default. So of these two, we only report the results
for default. Thus, we compare the performance of default with branch-and-bound, first
without the addition of PLO cuts. We note that in the case of the SOS2 approach, the
performance of default and branch-and-bound are not significantly different, which is
not surprising in the light of the previous discussion on the efficiency of GUROBI’s
pre-processing and primal heuristics for these instances.

The default setting reduced the number of enumeration nodes of branch-and-bound
by 65 % for LOG and 64 % for MIP (cf. Tables 4 and 5). As mentioned above, this
reduction is mostly due to MIP cutting planes. For the LOG model, the vast majority
of cuts were Gomory, specifically 90 % of the MIP cuts. For the MIP model, flow
cover was the most used, 81 % total, while Gomory was a distant second place, 16 %.
This is to be expected, since the MIP formulation exposes the flow cover structure
explicitly in the model, which is not the case with the LOG formulation.

Despite the significant reduction in number of nodes, the use of MIP cuts in
GUROBI default increased the computational time. At first, the average increase seems

@ Springer

Branch-and-cut for separable piecewise linear optimization 95

Table 3 Average solution time and # of instances solved for transshipment with the SOS2 approach

m.T Default B&B Def. + PLO cuts B&B + PLO cuts

Time #Sol. Time %Red. #Sol. Time %Red. #Sol. Time %Red. #Sol.

15.20 171 5 154 99 5 38 7178 5 30 825 5
15.25 1225 130 —-6.6 5 4 639 5 41 66.4 5
15.30 198 5 174 12.1 5 112 434 5 65 672 5
20.20 333 5 323 30 5 73 78.1 5 43 87.1 5
25.15 2,185 4 2,367 —-83 4 267 878 5 186 91.5 5
25.20 4,529 2 4,511 04 2 323 929 5 287 93.7 5
30.6 3,220 4 3,202 0.6 4 65 980 5 47 985 5
30.10 5,162 2 5,227 —-13 2 131 975 5 104 98.0 5
30.15 5,368 2 5577 -39 2 652 879 5 562 89.5 5
40.10 6,007 1 5,994 0.2 1 813 865 5 765 87.3 5
50.6 7,200 O 7,200 00 O 1,855 742 4 1,779 753 4
60.4 7,200 O 7,200 00 O 2,269 685 5 1,627 774 5
70.3 7,200 O 7,200 00 O 623 913 5 494 93.1 5
70.5 7,200 O 7,200 00 O 3,962 450 3 3,652 493 3
80.5 7,200 O 7,200 00 O 6,072 15.7 1 6,091 154 1
90.5 7,200 O 7,200 00 O 7,200 00 O 7,200 0.0 0
100.5 7,200 O 7,200 00 O 7,200 00 O 7,200 0.0 0
Average 4,570 2.1 4,592 —-05 2.1 1,865 59.2 4.0 1,775 61.2 4.0
Total 77,695 35 78,059 —0.5 35 31,699 59.2 68 30,173 61.2 68

modest, 0.2 % for LOG and 3.4 % for MIP (cf. Tables 1, 2). However, if we average
the percentage reduction in time for branch-and-bound over default for the instance
sizes where either one of default or branch-and-bound was solved to proven optimality
(first 13 entries of Table 1 and first 10 entries of Table 2) we obtain different results,
16 % for LOG and 6 % for MIP. This shows that the increase is significant for LOG
and higher than MIP’s. We also note that for LOG, in a few cases the increase was
almost 50 % (entries 15.25, 20.20, 25.15, and 30.6 of Table 1), while for MIP the
individual increases were smaller. A possible explanation for this is the large presence
of Gomory cuts. Because they are dense, when they are used in large quantities, typi-
cally, a reduction of about 60 % in the number of enumeration nodes does not decrease
computational time. Remember that many more Gomory cuts were added for LOG
than for MIP.

This computational time result is in agreement with tests conducted previously,
see for example [10,19], on platforms that are different. There, as well as here, the
use of MIP tools for PLO (and other combinatorial problems of similar type), did
not improve the computational time required to solve the problem, and in some cases
made it worse.

Now we compare the performance of default and branch-and-bound with PLO cuts
added to both. As in the previous case, their performances are not too different for
the SOS2 approach. On the other hand, the default setting reduced the number of

@ Springer

926 1. R. de Farias Jr. et al.

Table 4 Average number of enumeration nodes for transshipment with the LOG model

m.T Default B&B Def. + PLO cuts B&B + PLO cuts
Nodes Nodes %Red. Nodes %Red. Nodes %Red.
15.20 9,972 11,705 —17.4 546 94.5 952 90.5
15.25 12,268 16,834 —37.2 342 97.2 660 94.6
15.30 6,310 8,040 —27.4 652 89.7 741 88.3
20.20 29,023 42,652 —47.0 438 98.5 606 97.9
25.15 168,839 249,014 —47.5 1,204 99.3 1,621 99.0
25.20 144,815 449,428 —210.3 1,222 99.2 1,689 98.8
30.6 241,763 451,226 —86.6 1,592 99.3 2,038 99.2
30.10 222,788 642,184 —188.2 1,032 99.5 1,775 99.2
30.15 230,829 517,038 —124.0 2,171 99.1 3,269 98.6
40.10 197,821 613,385 —210.1 2,790 98.6 4,542 97.7
50.6 268,889 740,425 —175.4 4,360 98.4 12,436 95.4
60.4 321,817 1,253,942 —289.6 5,322 98.3 13,643 95.8
70.3 235,155 753,397 —220.4 1,839 99.2 4,384 98.1
70.5 126,790 407,905 —221.7 6,705 94.7 13,159 89.6
80.5 83,305 296,901 —256.4 6,601 92.1 16,559 80.1
90.5 62,540 223,295 —257.0 5,532 91.2 12,472 80.1
100.5 42,946 161,051 —275.0 2,885 93.3 6,763 84.3
Average 141,522 402,260 —184.2 2,661 98.1 5,724 96.0
Total 2,405,870 6,838,422 —184.2 45,233 98.1 97,309 96.0

enumeration nodes of branch-and-bound by 54 % for LOG and 36 % for MIP (cf.
Tables 4, 5), and it reduced the computational time by 13 % for LOG and 11 % for
MIP (cf. Tables 1, 2). So even though branch-and-bound was better than default when
the PLO cuts were not added, in our tests the best performance overall was obtained
when the PLO cuts were added on the top of the default setting.

We now discuss the effect of formulation on the computational results, first without
the addition of the PLO cuts. Of the three approaches, LOG was the most efficient, fol-
lowed by SOS2, followed by MIP. The LOG formulation solved to proven optimality 44
(52 %) instances in default and in branch-and-bound, as opposed to 35 (41 %) in default
and in branch-and-bound for SOS2, and 29 (34 %) in default and 30 (35 %) in branch-
and-bound for MIP (cf. Tables 1, 2, 3). In number of nodes, LOG reduced the number
of SOS2 nodes by 93 % in default and by 81 % in branch-and-bound, and the number
of MIP nodes by 46 % in default and 45 % in branch-and-bound (cf. Tables 4, 5, 6).
In computational time, LOG reduced the computational time of SOS2 by 15 % in
default and in branch-and-bound, and the computational time of MIP by 24 % in
default and 22 % in branch-and-bound (cf. Tables 1, 2, 3).

The superiority of SOS2 over MIP (even when equipped with cutting planes, primal
heuristic, and pre-processing) had already been noted and analyzed in the literature,
see for example [9, 10, 19]. The superiority of LOG over SOS2 was noted in [29,30]
when T (the number of partitions) is large, but it was not analyzed. Here again LOG

@ Springer

Branch-and-cut for separable piecewise linear optimization 97

Table S Average number of enumeration nodes for transshipment with the MIP model

m.T Default B&B Def. + PLO cuts B&B + PLO cuts
Nodes Nodes %Red. Nodes %Red. Nodes %Red.
15.20 70,452 89,675 -27.3 1,510 97.9 1,302 98.2
15.25 109,275 127,857 -17.0 1,701 98.4 1,324 98.8
15.30 470,910 360,488 234 2,822 99.4 2,385 99.5
20.20 194,841 237,535 -21.9 1,100 99.4 1,135 99.4
25.15 664,683 923,245 —38.9 5,107 99.2 5,346 99.2
25.20 485,813 822,335 —69.3 4,350 99.1 3,652 99.2
30.6 621,309 2,052,059 —230.3 3,920 99.4 3,346 99.5
30.10 715,605 1,312,370 —83.4 3,486 99.5 5,093 99.3
30.15 287,184 859,853 —199.4 17,696 93.8 11,628 96.0
40.10 291,834 754,546 —158.6 14,219 95.1 10,528 96.4
50.6 165,811 1,144,273 —590.1 6,608 96.0 14,357 91.3
60.4 128,332 1,086,020 —746.3 5,219 95.9 14,049 89.1
70.3 106,304 928,584 —773.5 1,657 98.4 6,255 94.1
70.5 64,967 642,132 —888.4 4,536 93.0 14,695 77.4
80.5 38,637 465,171 —1,104.0 4,137 89.3 16,002 58.6
90.5 28,965 341,841 —1,080.2 3,363 88.4 12,302 57.5
100.5 19,351 226,762 —1,071.8 1,292 93.3 6,491 66.5
Average 262,604 727,926 —177.2 4,866 98.1 7,641 97.1
Total 4,464,273 12,374,746 —177.2 82,723 98.1 129,890 97.1

is superior to SOS2. It remains to determine why. The first possible explanation is that
LOG allows for the use of all MIP features present in GUROBI, especially MIP cutting
planes. But in the present tests, branch-and-bound was superior to default for LOG, so
that cannot be the reason. Another possibility is GUROBI’s implementation of SOS2
branching being inferior to its 0—1 variable dichotomy branching implementation. As
we will see in Sect. 7, different implementations of SOS2 branching can lead to much
difference in performance. One other possibility is that the LOG formulation may be
breaking some of the symmetry inherent in transshipment with SOS2. We tried to
explore further this possibility by repeating all tests with GUROBI in a mode where
symmetry is explored aggressively. However, no improvement was detected (same
with CPLEX). We note that in case LOG is exploring symmetry, a different branching
scheme for SOS2 may eliminate the advantage of LOG and lead to an improved SOS2
approach.

With PLO cuts added, again LOG was superior to SOS2, which was superior to
MIP. The LOG formulation solved to proven optimality 74 (87 %) instances in default
and 69 (81 %) in branch-and-bound, as opposed to 68 (80 %) in default and branch-
and-bound for SOS2, and 69 (81 %) in default and 70 (82 %) in branch-and-bound for
MIP (cf. Tables 1, 2, 3). In number of nodes, LOG reduced the number of SOS2 nodes
by 71 % in default and by 37 % in branch-and-bound, and the number of MIP nodes

@ Springer

98 1. R. de Farias Jr. et al.

Table 6 Average number of enumeration nodes for transshipment with the SOS2 approach

m.T Default B&B Def. + PLO cuts B&B + PLO cuts
Nodes Nodes %Red. Nodes %Red. Nodes %Red.

15.20 352,673 325,453 7.7 1,122 99.7 1,194 99.7
15.25 197,901 216,402 -9.3 925 99.5 1,107 99.4
15.30 280,909 254,896 9.3 2,182 99.2 1,622 99.4
20.20 396,332 394,383 0.5 955 99.8 847 99.8
25.15 2,112,977 2,354,152 —11.4 3,461 99.8 3,009 99.9
25.20 3,248,977 3,346,952 -3.0 2,515 99.9 2,965 99.9
30.6 4,538,896 4,698,361 —-3.5 2,854 99.9 2,387 99.9
30.10 4,847,685 5,065,709 —4.5 2,015 100.0 2,228 100.0
30.15 3,324,306 3,618,237 —8.8 6,412 99.8 6,399 99.8
40.10 2,734,485 2,821,903 —-3.2 6,327 99.8 6,587 99.8
50.6 3,156,942 3,307,116 —4.8 15,344 99.5 17,387 99.4
60.4 2,837,364 2,914,406 2.7 31,410 98.9 26,271 99.1
70.3 2,502,456 2,574,268 -2.9 13,892 99.4 11,756 99.5
70.5 1,410,147 1,443,881 2.4 21,143 98.5 20,721 98.5
80.5 939,498 971,422 —34 21,715 97.7 22,887 97.6
90.5 702,865 719,886 —24 16,957 97.6 17,726 97.5
100.5 522,391 535,181 —24 8,608 98.4 9,125 98.3
Average 2,006,283 2,091,918 —4.3 9,285 99.5 9,072 99.5
Total 34,106,804 35,562,608 —4.3 157,837 99.5 154,218 99.5

by 45 % in default and 25 % in branch-and-bound (cf. Tables 4, 5, 6). In computational
time, LOG reduced the computational time of SOS2 by 22 % in default and 6 % in
branch-and-bound, and the computational time of MIP by 29 % in default and 9 %
in branch-and-bound (cf. Tables 1, 2, 3). Here again, we tested GUROBI in a mode
that explores symmetry aggressively, but did not obtain different results (same with
CPLEX). Overall, the best setting was LOG in default with PLO cuts.

6 Computational results for transportation instances

We tested 180 piecewise linear transportation instances. The instances can be grouped
into 3 sets with same value of 7', each containing 12 sets with same number |/| of
supply and |J| of demand nodes. The maximum computational time allowed for each
instance was 3,600 s of CPU. Here, unlike transshipment, adopting the “Aggressive
MIP Cuts” or the “Very Aggressive MIP Cuts” option led to inferior performance in
most cases. So we report on GUROBI’s default setting.

Again unlike transshipment, default performed better than branch-and-bound for
the LOG and MIP models, and almost the same for the SOS2 approach. For the LOG
formulation, default solved to proven optimality 94 (52 %) instances, as opposed to
38 (21 %) by branch-and-bound, when no PLO cuts were added, and 113 (63 %), as

@ Springer

Branch-and-cut for separable piecewise linear optimization 99

opposed to 95 (53 %), when the PLO cuts were added; in average, default reduced the
number of nodes of branch-and-bound by 74 % and the computational time by 28 %
when no PLO cuts were added, and the number of nodes by 45 % and the computational
time by 20 % when the PLO cuts were added. For the MIP formulation, default solved
to proven optimality 91 (51 %) instances, as opposed to 30 (17 %) by branch-and-
bound, when no PLO cuts were added, and 107 (59 %), as opposed to 80 (44 %) by
branch-and-bound, when the PLO cuts were added; in average, default reduced the
number of nodes of branch-and-bound by 55 % and the computational time by 32 %
when no PLO cuts were added, and the number of nodes by 11 % and the computational
time by 26 % when the PLO cuts were added. So we only report results for default.
The better performance of default over branch-and-bound is due almost entirely to the
MIP cutting planes. In the aforementioned studies [10, 19], MIP cuts were not efficient
for transportation. Possibly, improvements in the strategies and implementations for
MIP cutting planes made them more efficient here. The GUROBI default MIP cutting
planes separated for transportation (in the “usual” MIP and LOG formulations) were
the same as for transshipment, i.e. implied bounds, cover, flow cover, Gomory, and
MIR.

In Tables 7, 8, and 9 we compare the average number of enumeration nodes and
solution time, and the number of instances solved to proven optimality for GUROBI
in default setting against default with PLO cuts (11), (13), (16) and (18) added. In all
tables each entry refers to five instances. As with transshipment, we computed both
arithmetic and geometric averages, and they led to the same conclusions. So again we
report only the arithmetic averages. Table 7 gives results for the LOG formulation,
Table 8 for the MIP formulation, and Table 9 for the SOS2 approach.

In average, GUROBI added to the cutpool 15 % of the PLO cuts separated for
LOG, 10 % for MIP, and 14 % for SOS2. As with transshipment, the percentage
reduction in the number of enumeration nodes due to PLO cuts was greater with
CPLEX than GUROBI, but the percentage reduction in computational time was greater
with GUROBI. The majority of GUROBI cutting planes added for LOG and MIP was
flow cover, followed by Gomory. For LOG without PLO cuts, flow cover cuts were
55 % and Gomory 43 % of the GUROBI cuts; with PLO cuts, flow cover cuts were
69 % and Gomory 30 % of the GUROBI cuts. For MIP without PLO cuts, flow cover
cuts were 54 % and Gomory 32 % of the GUROBI cuts; with PLO cuts, flow cover
cuts were 64 % and Gomory 27 % of the GUROBI cuts. Because flow cover cuts are
usually not as dense as Gomory, the more balanced use of flow cover and Gomory,
with the majority being flow cover, may be one of the reasons MIP cuts were more
efficient for transportation than for transshipment.

The impact of PLO cuts both on computational time and number of enumeration
nodes was significant, but overall not as great as for transshipment (cf. Tables 7, 8,
9). Out of the 180 instances tested, GUROBI, in default setting, was able to solve
to proven optimality 94 (52 %), as opposed to 113 (63 %) with the PLO cuts, using
the LOG model; 91 (51 %), as opposed to 107 (59 %), using the MIP model; and 37
(21 %), as opposed to 90 (50 %), using the SOS2 approach. The average reduction
from default in the number of enumeration nodes by adding the PLO cuts was 95 %
with the LOG model, 92 % with the MIP model, and 99 % with the SOS2 approach.
The average reduction from default in computational time by adding the PLO cuts

@ Springer

100

1. R. de Farias Jr. et al.

Table 7 Average solution time and node, and # of instances solved for transportation with the LOG

model
|11.1J].T Default Default + PLO cuts

Node Time #Sol. Node JoRed. Time JoRed. #Sol.
25.50.5 87,532 936 4 587 99.3 18 98.1 5
25.100.5 54,743 971 5 526 99.0 34 96.5 5
25.200.5 66,092 2,578 2 457 99.3 101 96.1 5
25.300.5 49,010 3,600 0 232 99.5 103 97.1 5
25.400.5 35,873 3,600 0 631 98.2 479 86.7 5
50.100.5 3,703 171 5 175 95.3 37 78.4 5
50.200.5 1,334 272 5 25 98.1 43 84.2 5
50.300.5 2,975 617 5 12 98.4 99 91.0 5
50.400.5 5,356 1,754 4 1 100.0 139 92.1 5
100.200.5 8,743 1,036 4 59 99.3 207 80.0 5
100.300.5 26 322 5 5 80.8 222 31.1 5
100.400.5 393 528 5 1 99.7 260 50.8 5
25.50.10 78,595 659 5 7,139 90.9 398 39.6 5
25.100.10 96,586 2,037 3 10,004 89.6 1,511 25.8 4
25.200.10 60,468 3,466 1 5,097 91.6 2,879 16.9 2
25.300.10 31,651 3,600 0 2,486 92.1 3,172 11.9 1
25.400.10 16,806 3,600 0 1,486 91.2 3,567 0.9 1
50.100.10 21,549 812 5 185 99.1 117 85.6 5
50.200.10 19,027 1,564 3 105 99.4 319 79.6 5
50.300.10 2,773 910 5 105 96.2 473 48.0 5
50.400.10 11,774 3,384 2 115 99.0 817 75.9 5
100.200.10 6,804 986 5 173 97.5 1,033 —4.8 4
100.300.10 150 590 5 2 98.7 595 —0.8 5
100.400.10 92 613 5 6 93.5 736 —20.1 5
25.50.20 206,308 3,150 2 16,025 92.2 3,600 —14.3 0
25.100.20 83,214 3,492 1 5,114 93.9 3,600 -3.1 0
25.200.20 19,508 3,600 0 1,372 93.0 3,600 0.0 0
25.300.20 9,143 3,600 0 625 93.2 3,600 0.0 0
25.400.20 3,677 3,600 0 367 90.0 3,600 0.0 0
50.100.20 27,569 1,962 3 1,783 93.5 3,504 —78.6 1
50.200.20 7,684 3,600 0 599 92.2 3,600 0.0 0
50.300.20 2,522 3,600 0 261 89.7 3,600 0.0 0
50.400.20 1,912 3,600 0 143 92.5 3,600 0.0 0
100.200.20 4,250 3,568 1 190 95.5 3,600 -0.9 0
100.300.20 1,070 3,327 2 66 93.8 3,002 8.0 2
100.400.20 559 2,880 2 13 97.7 2,241 22.2 3
Average 28,596 2,183 2.6 1,560 94.5 1,627 25.5 3.1
Total 1,029,471 78,585 94 56,172 94.5 58,566 25.5 113

@ Springer

Branch-and-cut for separable piecewise linear optimization

101

Table 8 Average solution time and node, and # of instances solved for transportation with the MIP model

|11.1J].T Default Default + PLO cuts
Node Time #Sol. Node %Red. Time %Red. #Sol.

25.50.5 146,664 1,381 4 25,343 82.7 356 74.2 5
25.100.5 145,207 1,710 3 2,686 98.2 131 92.3 5
25.200.5 68,845 2,642 2 5,873 91.5 890 66.3 4
25.300.5 44,531 3,300 2 630 98.6 324 90.2 5
25.400.5 39,032 3,600 0 991 97.5 837 76.8 5
50.100.5 5,656 252 5 1,172 79.3 167 33.7 5
50.200.5 660 161 5 80 87.9 59 63.4 5
50.300.5 1,115 318 5 56 95.0 104 67.3 5
50.400.5 1,626 704 5 7 99.6 78 88.9 5
100.200.5 1,107 413 5 99 91.1 175 57.6 5
100.300.5 9 61 5 2 77.8 76 —24.6 5
100.400.5 247 415 5 4 98.4 128 69.2 5
25.50.10 376,311 2,471 2 39,355 89.5 2,480 —-0.4 2
25.100.10 507,188 3,600 0 20,001 96.1 3,600 0.0 0
25.200.10 47,534 3,600 0 5,507 88.4 3,600 0.0 0
25.300.10 29,901 3,600 0 2,577 91.4 3,600 0.0 0
25.400.10 17,788 3,600 0 1,424 92.0 3,600 0.0 0
50.100.10 3,714 396 5 308 91.7 218 449 5
50.200.10 7,061 1,078 4 209 97.0 497 53.9 5
50.300.10 2,804 1,259 5 390 86.1 1,469 —16.7 5
50.400.10 2,769 2,188 4 165 94.0 1,124 48.6 4
100.200.10 9 68 5 1 88.9 97 —42.6 5
100.300.10 3 96 5 0 100.0 112 —16.7 5
100.400.10 14 122 5 2 85.7 181 —48.4 5
25.50.20 186,226 3,600 0 14,066 92.4 3,600 0.0 0
25.100.20 27,271 3,600 0 4,196 84.6 3,600 0.0 0
25.200.20 8,113 3,600 0 1,379 83.0 3,600 0.0 0
25.300.20 2,739 3,600 0 591 78.4 3,600 0.0 0
25.400.20 2,745 3,600 0 273 90.1 3,600 0.0 0
50.100.20 9,962 3,207 1 2,096 79.0 3,600 —12.3 0
50.200.20 2,629 3,600 0 517 80.3 3,600 0.0 0
50.300.20 2,443 3,600 0 190 92.2 3,600 0.0 0
50.400.20 1,601 3,600 0 65 95.9 3,600 0.0 0
100.200.20 1,551 2,517 2 72 95.4 1,859 26.1 3
100.300.20 390 2,050 4 14 96.4 1,275 37.8 5
100.400.20 150 2,326 3 0 100.0 1,220 47.5 4
Average 47,100 2,109 2.5 3,621 92.3 1,685 20.1 3.0
Total 1,695,615 75,935 91 130,341 92.3 60,657 20.1 107

@ Springer

102

1. R. de Farias Jr. et al.

Table9 Average solution time and node, and # of instances solved for transportation with the SOS2 model

|11.1J].T Default Default + PLO cuts
Node Time #Sol. Node JoRed. Time %Red. #Sol.

25.50.5 2,110,475 1,815 4 2,314 99.9 28 98.5 5
25.100.5 1,852,388 3,600 0 1,527 99.9 49 98.6 5
25.200.5 619,103 3,600 0 9,993 98.4 942 73.8 5
25.300.5 362,697 3,600 0 2,944 99.2 586 83.7 5
25.400.5 237,542 3,600 0 7,554 96.8 2,748 23.7 2
50.100.5 423,790 1,816 4 1,049 99.8 95 94.8 5
50.200.5 290,946 2,971 2 99 100.0 35 98.8 5
50.300.5 136,919 2,931 1 110 99.9 71 97.6 5
50.400.5 129,503 3,600 0 80 99.9 95 97.4 5
100.200.5 150,929 3,472 1 462 99.7 344 90.1 5
100.300.5 16,894 672 5 141 99.2 229 65.9 5
100.400.5 26,602 1,572 3 48 99.8 147 90.6 5
25.50.10 1,666,720 2,504 2 43,222 97.4 1,846 26.3 3
25.100.10 808,788 3,600 0 25,897 96.8 3,600 0.0 0
25.200.10 325,992 3,600 0 6,661 98.0 3,600 0.0 0
25.300.10 192,535 3,600 0 3,083 98.4 3,600 0.0 0
25.400.10 128,298 3,600 0 1,766 98.6 3,600 0.0 0
50.100.10 271,766 2,298 3 1,924 99.3 678 70.5 5
50.200.10 178,276 3,600 0 1,854 99.0 1,868 48.1 5
50.300.10 106,273 3,600 0 871 99.2 1,808 49.8 4
50.400.10 62,412 3,600 0 853 98.6 3,098 13.9 1
100.200.10 29,714 1,561 3 514 98.3 1,867 —19.6 3
100.300.10 10,105 760 4 177 98.2 1,001 -31.7 5
100.400.10 7,385 752 4 71 99.0 886 —17.8 5
25.50.20 876,301 3,600 0 17,196 98.0 3,600 0.0 0
25.100.20 371,069 3,600 0 5,327 98.6 3,600 0.0 0
25.200.20 152,110 3,600 0 1,576 99.0 3,600 0.0 0
25.300.20 83,838 3,600 0 769 99.1 3,600 0.0 0
25.400.20 52,835 3,600 0 448 99.2 3,600 0.0 0
50.100.20 176,752 3,600 0 1,941 98.9 3,600 0.0 0
50.200.20 53,197 3,600 0 649 98.8 3,600 0.0 0
50.300.20 34,203 3,600 0 325 99.0 3,600 0.0 0
50.400.20 21,153 3,600 0 197 99.1 3,600 0.0 0
100.200.20 25,147 3,600 0 212 99.2 3,600 0.0 0
100.300.20 14,627 3,600 0 106 99.3 3,230 10.3 1
100.400.20 8,044 2,898 1 69 99.1 3,327 —14.8 1
Average 333,759 3,023 1.0 3,945 98.8 2,094 30.7 2.5
Total 12,015,328 108,822 37 142,029 98.8 75,378 30.7 90

@ Springer

Branch-and-cut for separable piecewise linear optimization 103

was 25 % with the LOG model; 20 % with the MIP model; and 30 % with the SOS2
approach.

We note, however, that the overall performance of the cuts was not uniform across
different values of T'. For the smaller values of 7 the PLO cuts were extremely efficient.
That was not the case for the larger values of 7. That is the reason the overall results
for transportation are not as great as for transshipment. For the rest of this section, we
refer to Tables 7, 8 and 9.

For the 60 instances with 7 = 5, default with the PLO cuts solved all (100 %)
instances to proven optimality as opposed to 44 (73 %) without the PLO cuts, for LOG;
59 (98 %), as opposed to 46 (77 %), for MIP; 57 (95 %), as opposed to 20 (33 %), for
SOS2. The average reduction from default in computational time by adding the PLO
cuts was 89 %, with the LOG model; 78 %, with the MIP model; and 84 %, with the
SOS2 approach. The average reduction from default in the number of enumeration
nodes by adding PLO cuts was 99 % with the LOG model, 92 % with the MIP model,
and 99.6 % with the SOS2 approach.

For T = 10, default with the PLO cuts solved 47 (78 %) instances to proven
optimality, as opposed to 39 (65 %) without the PLO cuts, for LOG; 36 (60 %), as
opposed to 35 (58 %), for MIP; 31 (52 %), as opposed to 16 (27 %), for SOS2. The
average reduction from default in computational time by adding the PLO cuts was
30 %, with the LOG model; 7 %, with the MIP model; and 17 %, with the SOS2
approach. The average reduction from default in the number of enumeration nodes by
adding the PLO cuts was 92 % with the LOG model, 93 % with the MIP model, and
98 % with the SOS2 approach.

For T = 20, default with the PLO cuts solved 6 (10 %) instances to proven
optimality, as opposed to 11 (18 %) without the PLO cuts, for LOG; 12 (20 %),
as opposed to 10 (17 %), for MIP; 2 (3 %), as opposed to 1 (2 %), for SOS2. The
average reduction from default in computational time by adding the PLO cuts was
—3 %, with the LOG model; 5 %, with the MIP model; and —0.1 %, with the SOS2
approach. The average reduction from default in the number of enumeration nodes by
adding PLO cuts was 93 % with the LOG model; 91 % with the MIP model; and 98 %
with the SOS2 approach. In Sect. 7 we will analyze further the dependence on T of
the performance of the PLO cuts for transportation.

We now discuss the effect of formulation on the computational results, first with-
out the addition of the PLO cuts. Overall, MIP and LOG were the most efficient
approaches, followed by SOS2. In computational time, MIP reduced by 3 % the com-
putational time of LOG, and by 30 % for SOS2. In number of nodes, MIP reduced by
—65 % the number of nodes for LOG, and by 86 % for SOS2. The MIP formulation
solved to proven optimality 91 (51 %) instances, as opposed to 94 (52 %) for LOG,
and 37 (21 %) for SOS2. This rank remains the same for all values of 7.

With PLO cuts added, overall LOG was the most efficient, followed by MIP, fol-
lowed by SOS2. In computational time, LOG reduced by 3 % the computational time
of MIP, and by 22 % for SOS2. In number of nodes, LOG reduced by 57 % the number
of nodes for MIP, and by 60 % for SOS2. The LOG formulation solved to proven opti-
mality 113 instances, as opposed to 107 for MIP, and 90 for SOS2. This rank remains
the same for 7' € {5, 10}. For T = 20, MIP is the most efficient, followed by LOG,
followed by SOS2.

@ Springer

104 1. R. de Farias Jr. et al.

7 Large special ordered sets

As pointed out in Sect. 6, the computational results for transportation indicated a
degradation in performance of the PLO cuts for larger values of 7. In this section we
elaborate on this issue. We consider two sets of data, both transportation: the ones we
generated and the data used in Vielma and Nemhauser [30]. Here, as in Sect. 6, the
maximum computational time allowed was 3,600 s of CPU.

In Tables 10, 11, and 12 we give the number of instances solved, the average
computational time, and the average number of enumeration nodes with and without
PLO cuts for our data type. Each entry in the tables gives an average over five instances.
The first two rows of the tables refer to small values of T (specifically, T € {5, 10}), and
the other rows to large values of T (specifically, T € {20, 30, 40, 80, 120}). Table 10
refers to the LOG formulation, Table 11 to the MIP formulation, and Table 12 to the
SOS2 approach.

Table 10 Average solution time and # of nodes, and # of instances solved for transportation with the LOG
model

|11.1J].T Default Default + PLO cuts

Node Time #Sol. Node %Red. Time %Red. #Sol.
10.20.5 14,542 18 5 951 93.5 3 83.3 5
10.20.10 22,418 46 5 1,873 91.6 12 73.9 5
10.20.20 35,044 48 5 8,664 75.3 121 —152.1 5
10.20.30 85,893 173 5 32,563 62.1 846 —389.0 5
10.20.40 165,599 440 5 39,757 76.0 2,074 —371.4 3
10.20.80 278,037 1,924 3 13,624 95.1 3,600 —87.2 0
10.20.120 282,304 3,097 2 4,059 98.6 3,600 —16.4 0
Average 126,262 821 4.3 14,499 88.5 1,466 —78.6 33
Total 883,837 5,746 30 101,491 88.5 10,262 —78.6 23

Table 11 Average solution time and # of nodes, and # of instances solved for transportation with the MIP
model

|11.|J].T Default Default + PLO cuts
Node Time #Sol. Node JoRed. Time J%Red. #Sol.

10.20.5 81,933 129 5 1,907 97.7 7 94.6 5
10.20.10 909,081 1,463 3 258,833 71.5 1,452 0.8 3
10.20.20 1,702,314 2,326 2 208,367 87.8 3,177 -36.6 1
10.20.30 2,064,999 3,600 0 103,104 95.0 3,600 0.0 0
10.20.40 1,070,054 3,600 0 52,286 95.1 3,600 0.0 0
10.20.80 337,078 3,600 0 8,943 97.3 3,600 0.0 0
10.20.120 96,223 3,600 0 2,088 97.8 3,600 0.0 0
Average 894,526 2,617 1.4 90,790 89.9 2,719 -39 1.3
Total 6,261,682 18,318 10 635,528 89.9 19,036 -39 9

@ Springer

Branch-and-cut for separable piecewise linear optimization 105

Table 12 Average solution time and # of nodes, and # of instances solved for transportation with the SOS2
approach

|11.|J].T Default Default + PLO cuts

Node Time #Sol. Node %Red. Time %Red. #Sol.
10.20.5 119,886 23 5 1,754 98.5 2 91.3 5
10.20.10 237,369 70 5 39,827 83.2 113 —61.4 5
10.20.20 861,870 433 5 87,644 89.8 855 -97.5 5
10.20.30 2,029,894 1,591 3 109,731 94.6 2,707 =70.1 2
10.20.40 3,442,864 3,600 0 66,138 98.1 3,600 0.0 0
10.20.80 1,618,481 3,600 0 12,243 99.2 3,600 0.0 0
10.20.120 960,401 3,600 0 4,494 99.5 3,600 0.0 0
Average 1,324,395 1,845 2.6 45,976 96.5 2,068 —12.1 2.4
Total 9,270,765 12,917 18 321,831 96.5 14,477 —12.1 17

Of the 10 instances with small values of 7', regardless of whether the PLO cuts were
used or not, all (100 %) were solved to proven optimality for the LOG formulation, 8
(80 %) for the MIP formulation, and all (100%) for the SOS2 approach. In average, the
PLO cuts reduced the computational time of default by 77 % for the LOG formulation,
8 % for the MIP formulation, and —24 % for the SOS2 approach. The number of nodes
was reduced by 92 % in the LOG formulation, 74 % in the MIP formulation, and 88 %
in the SOS2 approach.

On the other hand, of the 25 instances with large values of 7', default solved 20
(80 %), as opposed to 13 (52 %) with the PLO cuts, for the LOG formulation; 2 (8 %),
as opposed to 1 (4 %), for the MIP formulation; and 8 (32 %), as opposed to 7 (28 %),
for the SOS2 approach. In average, the use of PLO cuts increased the computational
time over default by 80 % for the LOG formulation, 5 % for the MIP formulation,
and 12 % for the SOS2 approach. In number of nodes, the use of PLO cuts reduced
the amount generated by default by 88 % for the LOG formulation; 93 % for the MIP
formulation; and 97 % for the SOS2 approach. So the performance of the PLO cuts
was considerably inferior to default for the large values of T'.

We note that the number of PLO cuts generated for the instances with large value
of T was extremely large, and even more importantly, the percentage of PLO cuts
added to the formulation was considerably smaller than for the other tests of this
section and of the previous ones. In the particular case of the tests with small 7" of this
section, 17 % of the PLO cuts generated were used for the LOG formulation; 37 %
for the MIP formulation; and 0.1 % for the SOS2 approach. For the tests with large T,
0.2 % were used for the LOG formulation; 4 % for the MIP formulation; and 0.001 %
for the SOS2 approach. So one possible explanation for the poor performance of the
PLO cuts in our tests with large 7" was, in part, the time wasted separating a large
number of cuts, which, in the end, did not pass GUROBI’s user cut filter. With this in
mind, we tried several alternatives for reducing the number of PLO cuts generated. For
example, we tried cut-and-branch, or limiting the number of cuts by a fixed amount, or
increasing the violation required for separation. In all our attempts, the performance

@ Springer

106 1. R. de Farias Jr. et al.

Table 13 # of Vielma—Nembhauser instances solved

Solver LOG MIP SOS2

Def. B&B PLO Def. B&B PLO Def. B&B PLO

CPX 100 100 100 91 92 100 96 97 100
GRB 100 100 100 100 100 100 100 100 100

Table 14 Average solution time for the Vielma—Nembhauser instances

Solver LOG MIP SOS2

Def. B&B PLO Def. B&B PLO Def. B&B PLO

CPX 6 8 4 684 545 21 266 244 10
GRB 6 4 4 56 56 9 15 15 219

Table 15 Average # of nodes for the Vielma—Nemhauser instances

Solver LOG MIP SOS2

Def. B&B PLO Def. B&B PLO Def. B&B PLO
CPX 5,063 4,446 57 254,910 303,039 258 709,249 710,774 270
GRB 4,403 4,215 71 41,520 49,369 155 37,800 41,254 22,107

of the PLO cuts continued poor. So, it may just be that our PLO cuts, for the type of
data we used, are not efficient when T is large. (Note that the results we present are
for branch-and-cut, i.e. we performed separation in all nodes of the enumeration tree).
Now we analyze the results obtained from the data of Vielma and Nemhauser [30].
We tested 100 of their instances, specifically, their largest, with || = |J| = 10, and
T = 32. Here we give the results of both CPLEX (denoted as CPX) and GUROBI
(denoted as GRB). In Table 13 we give the number of instances solved to proven
optimality by default, branch-and-bound, and default with PLO cuts (columns labeled
PLO). In Tables 14 and 15 we give the average computational time and number of
enumeration nodes, respectively, again for default, branch-and-bound, and default with
PLO cuts (columns labeled PLO). First, we analyze the results without the PLO cuts.
With CPLEX, LOG was more efficient than SOS2, which was more efficient than
MIP. LOG default and branch-and-bound solved all (100 %) instances to proven opti-
mality, while SOS2 solved 96 (96 %) in default and 97 (97 %) in branch-and-bound,
and MIP solved 91 (91 %) in default and 92 (92 %) in branch-and-bound. LOG
reduced the computational time of SOS2 by 98 % in default and by 97 % in branch-
and-bound; it reduced the computational time of MIP by 99 % in default and by 98 %
in branch-and-bound. LOG reduced the number of nodes of SOS2 by 99 % in default
and branch-and-bound; it reduced the number of nodes of MIP by 98 % in default
and branch-and-bound. These results are in agreement with the results of [30]. We
note that branch-and-bound was slightly better than default for LOG, SOS2, and MIP.
Therefore, CPLEX s facilities, such as MIP cutting planes, did not play a role.

@ Springer

Branch-and-cut for separable piecewise linear optimization 107

With GUROBI, LOG was slightly more efficient than SOS2, which was more
efficient than MIP, but the difference now was much less significant. All of them solved
all instances to proven optimality (100 %) in both default and branch-and-bound. LOG
reduced the computational time of SOS2 by 60 % in default and by 73 % in branch-and-
bound. However, the difference is of just a few seconds. As for MIP, LOG reduced its
computational time by 90 % in default and by 93 % in branch-and-bound, but again the
absolute difference is considerably smaller. The small difference in absolute value is in
disagreement with [30]. Because branch-and-bound was better than default for CPLEX
and equivalent for GUROBI, and branch-and-bound GUROBI was considerably more
efficient than branch-and-bound CPLEX, we raise the possibility that, in the case of
the data of [30], the difference in performance of LOG and SOS2 may be due to a
better implementation of variable dichotomy branching than SOS2 branching. LOG
reduced the number of nodes of SOS2 by 88 % in default and by 90 % in branch-and-
bound; it reduced the number of nodes of MIP by 89 % in default and by 92 % in
branch-and-bound.

With the PLO cuts, all instances were solved to proven optimality (100 %). For
CPLEX, the PLO cuts reduced the computational time in all cases, and the difference
in performance for LOG, MIP, and SOS2 became of just a few seconds. The reduction
was particularly significant for SOS2 and MIP. In the first case, the PLO cuts reduced
the computational time of default by 96 % and of branch-and-bound by 95 %. In the
second case, they reduced the computational time of default and branch-and-bound
by 97 %. For GUROBI, the PLO cuts reduced the computational time for MIP, and
their difference in performance for LOG and MIP again became of just a few seconds;
however, the PLO cuts worsened the performance of SOS2 considerably. So, for the
data of [30], the PLO cuts were efficient even with the value of T being large, except
in the case of the SOS2 models running GUROBI. For the data of [30], the percentage
of PLO cuts that passed GUROBI’s user cut filter was much greater, 23 % for LOG,
0.01 % for SOS2, and 26 % for MIP.

8 Performance of SC-PLO cuts for transportation with semi-continuous
constraints

We now give the results of our computational testing of the SC-PLO cuts on transporta-
tion with semi-continuous constraints. In all tests we used only the LOG formulation
and GUROBI in default setting. Table 16 gives the computational time and number of
enumeration nodes for default, default with PLO cuts, and default with SC-PLO cuts.
The columns “%Red.” for default with PLO cuts refer to number of nodes and com-
putational time reduction over default. However, “%Red.” for default with SC-PLO
cuts refer to number of nodes and computational time reduction over default with PLO
cuts. Unlike in the other sections, each entry of Table 16 refers to a single instance.
Because these instances turned out to be considerably more difficult than the ones
without semi-continuous constraints, we allowed for a maximum computational time
of 7,200 s of CPU.

Of the 25 instances tested, default solved to proven optimality 15 (60 %) instances,
as opposed to 17 (68 %) with PLO cuts and 18 (72 %) with SC-PLO cuts. The average

@ Springer

1. R. de Farias Jr. et al.

108

00 00T'L 23 OVLTLL 00 00T'L 69 859°86L 00T'L 826°L09'C 010201
00 00T'L 6 9" 0bL 00 00T'L TLL €L6'T9L 00T'L €97°05€°€ 010201
Ty 5689 66 6LT°686 00 00T'L L'z 6£6°050°T 00C'L 99L°122'T 010201
00 00T'L L'y 88S°CIE T 00 00T'L TLs $76'08€'1 00T'L LI¥'6TT € $0T01
00 00T'L 10 656'696'T 00 00T'L '8¢ 8TLIL6'T 00T'L €00'+¥L'T $0T01
00 00T'L Te LEL'ITE'T 00 00T'L 0’8t LT8°T6E'T 00T'L 98°009't §0T01
8¢S e 509 £08°€9 816 L8S v'L6 675191 00T'L 8TESIE'9 §0T01
00 00T'L L€t TLE'STL'T 00 00T'L T6T 189°100°C 00T'L 8€€'8T8'T $0T01
0'vS 15§ €59 699°FST ¢8I L61'1 €'8L 908" St 891 11€°160°C 01918
€9¢ 001 €IS 906'ST €Ls LST €16 TLIes 89¢ 659°€19 01918
091 082'C 001 90°€59 6'1C 996'1 vLL L69°STL 8IS'T v6°60C°€ 01918
8'6L 59 98 98 %1 9'181— 143 an 91L°L0T Tl L6691 01918
LOL 11 an $T€'00€ 1'ss— 88L'¢ L'z 91T0EE'T wr'e 681°418°C 01918
T6C— 13 Tse- 8L8°T1 €9z T 8TL 88L'S 61 1v€'Te 0rvIL
I'se 0zt 66 ¥€0°0F - S8l 609 876°6L €81 1€L'00C 0rvIL
6'LE s L8y 9LT 61 SLL L8 €6 €65°LE 98¢ 1€°TLS 0rpIL
'S St €L9 08¥°TI SIS €8 0S8 €7T'8¢ 1L1 0v1'¥ST 0rvIL
0'0S 8 '8S H0E'T 008 91 816 €rS's 3 $¥6°L9 0rvIL
00 6 &z €€6'1 €'€6 6 786 866°C el 959°SH1 01'0T'S
0'0r € vor 126 808 S 96 Sss'l 9T 99L°Th 01'0T’S
00 8 a2 LLO'T v0L 8 66 Tws'e i 091°0S 01'0T’S
79 T 6'SL 7L Loy 9 L'SL 266°LT 801 8TTIET 01'0T’S
00 S T8l €Il 19 S 616 09€'1 €1 02L'9T 01'0T’s

PA% oy, P apoN PA% oy, P apoN oy, 9poN
0 O1d-0S + 1°d SN0 O'1d + J1°d nnejeq Ll

SJUTENSUOD SNONUNUO-TWAS YIIM uoneIodsues) 10J SOPOU JO # pue W uonnjos 9| d[qeL,

pringer

as

109

Branch-and-cut for separable piecewise linear optimization

'8 91829 vLT £56'8€€ T 91 8€€°89 799 YOr 0£6 71 600°08 8IL'6LI VH [eI0L

'8 €IS°T vLT 86 ¢C6h 91 YEL'T 799 912°L6S 00T'€ 681°L9L°T o3eIoAy

00 00T'L 9L 666°590°T 00 00T‘L 919 Y69°€ST T 00T'L ¥68°€00°¢ 01°0T°01

19 €98 L99 STS'8TI 6'89 9€T'T L98 120°98¢ 00T‘L 6V1°406°C 01°0T°01
"PON% Qwiry, POA% 9poON POU% Qwip, ‘PoA% 9pON swiry, 3poN

SN0 O1d-DS + Jod $M0 O'1d + “Jod neq Llrllnl

panunuod 9y Iqey,

pringer

As

110 1. R. de Farias Jr. et al.

reduction in computational time over default for the 17 instances that default with
PLO cuts solved to proven optimality was of 52 %. Of these 17 instances, default
with PLO cuts was faster for 13 instances (in almost all cases by more than 50 %)
and slower for 4 instances. The average reduction in number of nodes was of 83 %
(cf. Table 16).

The average reduction in computational time over default with PLO cuts for the
18 instances that default with SC-PLO cuts solved to proven optimality was of 31 %.
Of these 18 instances, default with SC-PLO cuts was faster for 13 instances (in most
cases by more than 40 %) and slower for 2 instances. The average reduction in number
of nodes was of 46 % (cf. Table 16).

So, PLO cuts were considerably useful for solving the instances, and SC-PLO
cuts were even more useful. Only 0.04 and 0.02 % of the PLO and SC-PLO cuts,
respectively, separated were used. It is then possible that by separating less PLO and
SC-PLO cuts, their performance on these instances may be improved.

9 Summary of conclusions and further research

Our results give a strong indication that in order to solve medium to large-scale difficult
instances of PLO it is essential to use cuts that consider the SOS2 constraints. Such
cuts may be generic (as far as PLO is concerned), e.g. the cuts of Zhao and de Farias
[32]. However, without them, solving PLO to proven optimality is a formidable task.
So we suggest as a direction of further research investigating new cuts for PLO.

Our results indicate that the cuts of Zhao and de Farias [32] are consistently efficient
when 7 is small. For larger values of T, their performance worsened with increasing 7
for our data. However, for the data of Vielma and Nemhauser [30], in which 7 is within
our bracket of larger values, they became, in most cases, efficient again. So another
topic for further research is when the cuts of Zhao and de Farias [32] are efficient for
large T. A more general question is “Which types of PLO cuts are efficient when T
is large?”

As already expected from previous studies, e.g. [9,10,19], SOS2 performed better
than MIP in our tests. However, LOG performed better than SOS2. The reason for
that needs to be clarified. In our experiments LOG performed better even for small 7',
differently from the results of Vielma and Nemhauser [30], in which LOG performed
better for larger 7 but not for smaller 7. One possibility is that the superiority of
LOG is simply the result of CPLEX’s and GUROBI’s better implementation of 0—1
variable dichotomy branching over SOS2 branching. Another possibility is that LOG
possesses an inherent property that makes it more efficient than SOS2, at least for
some problems. In this case, it would be interesting determining such property and
how to take advantage of it. For example, they could possibly be used to improve other
branching schemes, even SOS2.

Still on the issue of formulation, another possibility that should be tested computa-
tionally is incremental cost [21]. Despite evidences that itis computationally equivalent
to the “usual” MIP formulation, see for example [18], there may be situations in which
it performs better. We believe that discovering and understanding such situations is an
interesting topic for further investigation.

@ Springer

Branch-and-cut for separable piecewise linear optimization 111

The results on PLO with semi-continuous constraints showed the potential of cutting
planes that consider two or more combinatorial structures at the same time (in our case,
SOS2 and semi-continuous). Such studies are scarce (actually, we are not aware of any,
at least in a setting as general as ours). We believe that this is an interesting topic of
further investigation. Specifically, we suggest investigating the inequality description
of these sets (e.g. defined by a knapsack, SOS2, and semi-continuous constraints), and
the computational possibilities of their valid inequalities.

Finally, we would like to point out two questions on computational PLO that our
results indicated to be interesting:

— How should PLO and SC-PLO cuts be filtered?
— When are MIP cuts for the LOG and MIP models efficient?

We suggest their study as topics for further research.

Acknowledgments This research was partially supported by the Office of Naval Research and the National
Science Foundation through grants N000140910332 and CMMI-0620755, respectively. Their support is
gratefully acknowledged. We are grateful to George Nemhauser and Juan-Pablo Vielma for making avail-
able to us the instances of their paper [30]. We are also grateful to Zhonghao Gu and Ed Rothberg for
enlightening discussions. Finally, we are grateful to the anonymous referees and the editors, for several
valuable suggestions.

References

1. Beale, E.M.L.: Two transportation problems. In: Kreweras, G., Morlat, G. (eds.) Proceedings of the
Third International Conference on Operational Research, Dunod, pp. 780-788 (1963)

2. Beale, EM.L., Tomlin, J.A.: Special facilities in a general mathematical programming system for
nonconvex problems using ordered sets of variables. In: Lawrence, J. (ed.) Proceedings of the Fifth
International Conference on Operations Research, Tavistock Publications, pp. 447-454 (1970)

3. Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems.
Math. Program. 74, 121-140 (1996)

4. Crowder, H., Johnson, E.L., Padberg, M.: Solving large-scale zero-one linear programming problems.
Oper. Res. 31, 803-834 (1983)

5. Croxton, K.L., Gendron, B., Magnanti, T.L.: Models and methods for merge-in-transit operations.
Transp. Sci. 37, 1-22 (2003)

6. Croxton, K.L., Gendron, B., Magnanti, T.L.: Variable Disaggregation in Network Flow Problems
with Piecewise Linear Costs. Operations Research Center, Massachusetts Institute of Technology,
Cambridge (2003)

7. Dantzig, G.B.: On the significance of solving linear programming problems with some integer variables.
Econometrica 28, 30-44 (1960)

8. deFarias, I.R. Jr.: Semi-continuous cuts for mixed-integer programming. In: Bienstock, D., Nemhauser,
G.L. (eds.) Integer Programming and Combinatorial Optimization (IPCO). Lecture Notes in Computer
Science, vol. 3064, pp. 163-177, Springer (2004)

9. de Farias, I.R. Jr., Johnson, E.L., Nemhauser, G.L.: A generalized assignment problem with special
ordered sets: a polyhedral approach. Math. Program. 89, 187-203 (2000)

10. de Farias, I.R Jr., Johnson, E.L., Nemhauser, G.L.: Branch-and-cut for combinatorial optimization
problems without auxiliary binary variables. Knowl. Eng. Rev. 16, 25-39 (2001)

11. de Farias, I.R. Jr., Kozyreft, E., Gupta, R., Zhao, M.: Branch-and-Cut for Separable Piecewise Linear
Optimization and Intersection with Semi-Continuous Constraints. Texas Tech University, USA (2011)

12. de Farias, I.R. Jr., Nemhauser, G.L.: A polyhedral study of the cardinality constrained knapsack prob-
lem. Math. Program. 96, 439-467 (2003)

13. de Farias, I.LR. Jr., Zhao, M.: A polyhedral study of the semi-continuous knapsack problem. Math.
Programm. (2011, submitted)

@ Springer

112

1. R. de Farias Jr. et al.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.

31.
32.

de Farias, I.R. Jr., Zhao, M., Zhao, H.: A special ordered set approach for optimizing a discontinuous
separable piecewise linear function. Oper. Res. Lett. 36, 234-238 (2008)

Fourer, R., Gay, D.M., Kerninghan, B.W.: AMPL: A Modeling Language for Mathematical Program-
ming. The Scientific Press, USA (1993)

Gu, Z.: Personal communication

http://www.hpcc.ttu.edu/index.php

Keha, A.B., de Farias, L.R. Jr., Nemhauser, G.L.: Models for representing piecewise linear cost func-
tions. Oper. Res. Lett. 32, 44-48 (2004)

Keha, A.B., de Farias, I.R. Jr., Nemhauser, G.L.: A branch-and-cut algorithm without binary variables
for nonconvex piecewise linear optimization. Oper. Res. 54, 847-858 (2006)

Konno, H., Wijayanayake, A.: Portfolio optimization problem under concave transaction costs and
minimal transaction unit constraints. Math. Program. 89, 233-250 (2001)

Markowitz, H.M., Manne, A.S.: On the solution of discrete programming problems. Econometrica 25,
84-110 (1957)

Martin, A., Méller, M., Moritz, S.: Mixed-integer models for the stationary case of gas network opti-
mization. Math. Program. 105, 563-582 (2006)

Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (1999)

Perold, A.F.: Large-scale portfolio optimization. Manag. Sci. 30, 1143—-1160 (1984)

Sioshansi, R., O’Neill, R.O., Oren, S.S.: Economic consequences of alternative solution methods for
centralized unit commitment in day-ahead electricity markets. IEEE Trans. Power Syst. 23, 344-352
(2008)

Takriti, S., Birge, J.R., Long, E.: A stochastic model for the unit commitment problem. IEEE Trans.
Power Syst. 11, 1497-1508 (1996)

Takriti, S., Krasenbrink, B., Wu, L.S.Y.: Incorporating fuel constraints and electricity spot prices into
the stochastic unit commitment problem. Oper. Res. 48, 268-280 (2000)

Tomlin, J.A.: Special ordered sets and an application to gas supply operations planning. Math. Program.
42, 69-84 (1988)

Vielma, J.P., Ahmed, S., Nemhauser, G.L.: Mixed-integer models for nonseparable piecewise linear
optimization: unifying framework and extensions. Oper. Res. 58, 303-315 (2010)

Vielma, J.P., Nemhauser, G.L.: Modeling disjunctive constraints with a logarithmic number of binary
variables and constraints. Math. Program. 128, 49-72 (2011)

Zhang, M., Guan, Y.: Two-Stage Robust Unit Commitment Problem. University of Florida, USA (2009)
Zhao, M., de Farias, LR. Jr.: The Piecewise Linear Optimization Polytope: New Inequalities and
Intersection with Semi-Continuous Constraints. Math. Program. (2012, in press)

@ Springer

http://www.hpcc.ttu.edu/index.php

	Branch-and-cut for separable piecewise linear optimization and intersection with semi-continuous constraints
	Abstract
	1 Introduction
	2 Valid inequalities
	2.1 Valid inequalities for PLO
	2.1.1 Lifted convexity inequalities
	2.1.2 Lifted cover inequalities

	2.2 Valid inequalities for PLO with semi-continuous variables

	3 Separation heuristics
	4 Platform, problems and instances, and tests conducted
	4.1 Platform
	4.2 Problems
	4.3 Instances
	4.4 Tests conducted

	5 Computational results for transshipment instances
	6 Computational results for transportation instances
	7 Large special ordered sets
	8 Performance of SC-PLO cuts for transportation with semi-continuous constraints
	9 Summary of conclusions and further research
	Acknowledgments
	References

