
Mathematical Programming Computation (2019) 11:457–501
https://doi.org/10.1007/s12532-019-00156-4

FULL LENGTH PAPER

Solving equilibrium problems using extended
mathematical programming

Youngdae Kim1 ·Michael C. Ferris2

Received: 19 January 2018 / Accepted: 26 December 2018 / Published online: 2 March 2019
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019

Abstract
We introduce an extendedmathematical programming framework for specifying equi-
librium problems and their variational representations, such as generalized Nash
equilibrium,multiple optimization problemswith equilibrium constraints, and (quasi-)
variational inequalities, and computing solutions of them from modeling languages.
We define a new set of constructs with which users annotate variables and equations of
the model to describe equilibrium and variational problems. Our constructs enable a
natural translation of themodel from one formulation to anothermore computationally
tractable form without requiring the modeler to supply derivatives. In the context of
many independent agents in the equilibrium, we facilitate expression of sophisticated
structures such as shared constraints and additional constraints on their solutions. We
define shared variables and demonstrate their uses for sparse reformulation, economic
equilibrium problems sharing economic states, mixed pricing behavior of agents, and
so on. We give some equilibrium and variational examples from the literature and
describe how to formulate them using our framework. Experimental results compar-
ing performance of various complementarity formulations for shared variables are
provided. Our framework has been implemented and is available within GAMS/EMP.

Keywords Equilibrium programming · Nash equilibrium problems ·
Quasi-variational inequalities

Mathematics Subject Classification 90C33 · 90C90 · 65K10 · 65K15

B Youngdae Kim
youngdae@anl.gov

Michael C. Ferris
ferris@cs.wisc.edu

1 Mathematics and Computer Science Division, Argonne National Laboratory, 9700 Cass Avenue,
Lemont, IL 60439, USA

2 Department of Computer Sciences and Wisconsin Institute for Discovery, University of
Wisconsin-Madison, 1210 West Dayton St., Madison, WI 53706, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-019-00156-4&domain=pdf

458 Y. Kim, M. C. Ferris

1 Introduction

In this paper, we present an extended mathematical programming (EMP) framework
for specifying equilibrium problems and their variational representations and comput-
ing solutions of them in modeling languages such as AMPL, GAMS, or Julia [2,4,13].
Equilibriumproblemsof interest are (generalized)Nash equilibriumproblems (GNEP)
and multiple optimization problems with equilibrium constraints (MOPEC), and we
consider quasi-variational inequalities (QVI) in their variational forms. All of these
problems have been used extensively in the literature [3,9,16,26], but until this work
they have not been available directly within modeling systems.

The GNEP is a Nash game between agents with non-disjoint strategy sets. For a
given number of agents N , x∗ = (x∗

1 , . . . , x
∗
N) is said to be a solution to the GNEP if

it satisfies

x∗
i ∈ argmin

xi∈Ki (x∗−i)⊂R
ni

fi (xi , x
∗−i), for i = 1, . . . , N , (1)

where fi (xi , x−i) is the objective function of agent i , and Ki (x−i) is its feasible region.
Note that the objective function and the feasible region of each agent are affected by
the decisions of other agents, denoted by x−i = (x1, . . . , xi−1, xi+1, . . . , xN). If each
agent’s feasible region is independent of other agents’ decisions, that is, Ki (x−i) ≡ Ki

for some nonempty set Ki , then the problem is called a Nash equilibrium problem
(NEP).

In addition to the GNEP or NEP setting, if we have an agent formulating some equi-
librium conditions, such as market clearing conditions, as a variational inequality (VI)
whose definition is given in Sect. 2, we call the problem multiple optimization prob-
lems with equilibrium constraints (MOPEC). For example, x∗ = (x∗

1 , . . . , x
∗
N , x∗

N+1)

is a solution to the MOPEC if it satisfies

x∗
i ∈ argmin

xi∈Ki (x∗−i)⊂R
ni

fi (xi , x
∗−i), for i = 1, . . . , N ,

x∗
N+1 ∈ SOL(KN+1(x

∗
−(N+1)),G(·, x∗

−(N+1))),

(2)

where SOL(K ,G) denotes the solution set of a variational inequality VI(K ,G),
assuming that for each given x−(N+1) KN+1(x−(N+1)) is a nonempty closed con-
vex set and G(·, x−(N+1)) is a continuous function. We call agent i for i = 1, . . . , N
an optimization agent and agent (N + 1) an equilibrium agent.

Solutions of these problems using modeling languages are usually obtained by
transforming the problem into their equivalent (under mild assumptions described in
Sect. 2) complementarity form, such as a mixed complementarity problem (MCP),
and then solving the complementarity problem using a specialized solver, for exam-
ple Path [6,12]. The complementarity problem is constructed by concatenating the
Karush–Kuhn–Tucker (KKT) conditions of each agent. This implies that users need
to compute those conditions by hand and then manually specify the complementarity
relationships within modeling languages [11,29]. Similar transformations are needed

123

Solving equilibrium problems using extended mathematical programming 459

to formulate equilibrium problems in their variational forms represented by QVIs as
we show in Sect. 2.

This approach has several drawbacks. Computing derivatives by hand to form the
MCP is a time-consuming and error-prone procedure. The problem structure becomes
lost once it is converted into the complementarity form: it is difficult to tell what the
original model is and which agent controls what variables and equations (objective/VI
functions and constraints) by just reading the complementarity form. For QVI formu-
lations, we lose the information about what variables are used as parameters to define
the feasible region. All variables and equations are endogenous in that form. This may
restrict opportunities for back-end solvers to detect and make full use of the problem
structure. Modifying the model such as adding/removing variables and equations may
not be easy: it typically involves a lot of derivative recomputation.

To resolve these issues, it is desirable to allow equilibrium problems to be specified
in their natural algebraic form, such as (1) and (2). However, the notion of agents’
ownership of variables and equations of a model makes it challenging to achieve this.
For example, agent i owns (or controls) variable xi and equations fi and Ki , while other
agents’ variable x−i appearing in agent i’s problem must be treated as a parameter.
This is in contrast to traditional optimization or complementarity problemswhich have
a monolithic nature in their ownership, that is, we can think of them as a single agent
owning all the variables and equations of the model. As the ownership information
is essential in constructing and testing correct optimality conditions of each agent,
modeling languages should be able to provide constructs to capture and pass it on to
the underlying solvers. Since the existing modeling languages are designed based on
themonolithic ownership, no appropriate constructs exist to specify agents’ ownership
information for the equilibrium problems.

For more intuitive and efficient equilibrium programming, that is, formulating
GNEP, MOPEC, or QVI in modeling languages, the paper [10] briefly mentioned that
the EMP framework can be used to specify GNEPs and MOPECs. The goal of EMP
is to enable users to focus on the problem description itself rather than spending time
and checking errors on the derivation of complementarity formulations. Users define
variables and equations of a model in the usual way in modeling languages. Compli-
cated structure, such as agent’s ownership information, is specified in a separate text
file, called the empinfo file, by annotating variables and equations of the model in a
natural way using the constructs provided by the EMP framework. The modeling lan-
guage reads that file to identify high level structure of the problem, and the information
captured is passed on to the solvers to compute a solution. It then automatically con-
structs the corresponding complementarity form and solves it using complementarity
solvers. However, neither detailed explanations about its underlying assumptions and
how to use it are given, nor are the QVI formulations considered in [10].

In this paper, we present detailed explanation of the existing EMP framework for
equilibrium programming for the first time.We also describe its extensions to incorpo-
rate some new sophisticated structures, such as shared constraints, shared variables,
and QVI formulations, and their implications with examples from the literature. Our
extensions allow a natural translation of the algebraic formulation into modeling lan-
guages while capturing high level structure of the problem so that the back-end solver
can harness the structure for improved performance.

123

460 Y. Kim, M. C. Ferris

Specifically, our framework allows shared constraints to be represented without any
replications and makes it easy to switch between different solution types associated
with them, for example variational equilibrium [9,28]. We introduce shared variables
and show their manifestations in the literature. Shared variables have potential for
many different uses: (i) they can be used to reduce the density of the model; (ii) they
can model some economic equilibrium problems sharing the same economic states;
(iii) we can easily switch between price-taking and price-making agents in economics
models; (iv) they can be used to model shared objective functions. The last case opens
the door for our framework to be used to model the block coordinate descent method,
where agents now correspond to a block of variables. Finally, we define a new construct
that allows QVI formulations to be specified in an intuitive and natural way. The new
features have been implemented and are available within GAMS/EMP. In this case,
we use a problem reformulation solver JAMS, and choose formulations if necessary
in an option file jams.opt.

The rest of the paper is organized as follows. In Sect. 2, we define the equilibrium
formulations our framework allows. We describe conditions under which the comple-
mentarity form is equivalent to the given equilibrium problem and its variational form.
Section 3 presents the underlying assumptions of the existing framework and shows
how we can model equilibrium problems satisfying these assumptions. In Sects. 4
and 5, we present sophisticated structures that violate the assumptions and intro-
duce our modifications to incorporate them into our framework. Section 4 describes
shared constraints and presents a new construct to define the type of solutions, either
GNEP equilibria or variational equilibria, associated with them. In Sect. 5, we intro-
duce shared variables and various complementarity formulations for them. Section 6
presents a new construct to specify QVIs and compares two equivalent ways of spec-
ifying equilibrium problems in either GNEP or QVI form. At the end of each section
of Sects. 3, 4, 5 and 6, we provide examples from the literature that can be neatly for-
mulated using the feature of our framework. Section 7 concludes the paper, pointing
out some areas for future extensions.

2 Preliminaries

For given equilibrium problems or their variational forms, the default action of our
framework converts them into MCPs and computes a solution to those complemen-
tarity problems. In this section, we describe equivalences of the equilibrium problems
with quasi-variational inequalities, variational inequalities, and mixed complementar-
ity problems.

We first introduce QVIs, VIs, and MCPs in a finite-dimensional space. For a given
continuous function F : R

n → R
n and a point-to-set mapping K : R

n ⇒ R
n where

K (x) is a closed convex (possibly empty) set for each x ∈ R
n , x∗ ∈ K (x∗) is a

solution to the QVI(K , F) if

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ K (x∗), (QVI)

where 〈·, ·〉 is the Euclidean inner product.

123

Solving equilibrium problems using extended mathematical programming 461

If we restrict the point-to-set mapping K (·) to be a fixed closed convex set K ⊂ R
n ,

then x∗ ∈ K is a solution to the VI(K , F) if

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ K . (VI)

One can easily show that x∗ is a solution to the (VI) if and only if 0 ∈ F(x∗)+NK (x∗),
where NK (·) is a normal cone defined over a closed convex set K such that NK (x) :=
{y | 〈y, z − x〉 ≤ 0,∀z ∈ K } if x ∈ K and an empty set otherwise.

If we further specialize to the case where the feasible region is a box B = {x ∈ R
n |

li ≤ xi ≤ ui , for i = 1, . . . , n}with li ≤ ui and li ∈ R∪{−∞} and ui ∈ R∪{∞}, the
VI(B, F) is typically termed a mixed complementary problem. In this case, x∗ ∈ B
is a solution to the MCP(B, F) if one of the following conditions holds for each
i = 1, . . . , n:

x∗
i = li , Fi (x

∗) ≥ 0,

li ≤ x∗
i ≤ ui , Fi (x

∗) = 0,

x∗
i = ui , Fi (x

∗) ≤ 0.

(MCP)

In shorthand notation, the above condition is written as l ≤ x∗ ≤ u ⊥ F(x∗). We
sometimes put a bound constraint on a function explicitly when the corresponding
variable has only one-sided bound and use MCP(x, F) when the feasible region of x
is clear from the context.

Throughout this paper, we assume by default that equilibrium problems are of
the form (2), and there are (N + 1) number of agents where the first N agents are
optimization agents, and the (N + 1)th agent is an equilibrium agent. When there
is no equilibrium agent, then the problem becomes a (generalized) Nash equilibrium
problem. If there are no optimization agents but a single equilibrium agent, then the
problem is a variational inequality. All results in this section hold in the case where
either type of agent is not present.

The results described below are simple extensions of the existing results found
in [16]. We first show the equivalence between the equilibrium problems and their
associated QVIs.

Proposition 1 If fi (·, ·) is continuously differentiable, fi (·, x−i) is a convex function,
and Ki (x−i) is a closed convex set for each given x−i , then x∗ is a solution to the
equilibrium problem (2) if and only if it is a solution to the QVI(K , F) where

K (x) =
N+1∏

i=1

Ki (x−i),

F(x) = (∇x1 fi (x1, x−1)
�, . . . ,∇xN fN (xN , x−N)�,G(xN+1, x−(N+1))

�)�,

with G being the VI function of the equilibrium agent.

Proof (⇒) Let x∗ be a solution to (2). For optimization agents, the first-order opti-
mality conditions are necessary and sufficient by the given assumption. Therefore we
have

123

462 Y. Kim, M. C. Ferris

〈∇xi fi (x
∗
i , x∗−i), xi − x∗

i 〉 ≥ 0, ∀xi ∈ Ki (x
∗−i), for i = 1, . . . , N .

Also we have

〈G(x∗
N+1, x

∗
−(N+1)), xN+1 − x∗

N+1〉 ≥ 0, ∀xN+1 ∈ KN+1(x
∗
−(N+1)).

The result follows.
(⇐) Let x∗ be a solution to the QVI(K , F). The result immediately follows from

the fact that K (x) is a product space of Ki (x−i)’s for i = 1, . . . , N + 1. ��
If each agent i has knowledge of a closed convex set X and uses this to define its

feasible region Ki (x−i) using a shared constraint Ki (x−i) := {xi ∈ R
ni | (xi , x−i) ∈

X}, then the QVI(K , F) can be solved using a simpler VI(X , F).

Proposition 2 Suppose that Ki (x−i) = {xi ∈ R
ni | (xi , x−i) ∈ X} for i = 1, . . . , N+

1 with X being a closed convex set and K (x) = ∏N+1
i=1 Ki (x−i). If x∗ is a solution to

the VI(X , F) with F defined in Proposition 1, then it is a solution to the QVI(K , F),
thus it is a solution to (2) with the same assumptions on fi (·) given in Proposition 1.
The converse may not hold.

Proof (⇒) Let x∗ be a solution to the VI(X , F). Clearly, x∗ ∈ K (x∗). We prove by
contradiction. Suppose there exists x ∈ K (x∗) such that 〈F(x∗), x − x∗〉 < 0. There
must exist i ∈ {1, . . . , N + 1} satisfying 〈Fi (x∗), xi − x∗

i 〉 < 0. Set x̃ = (xi , x∗−i). As
xi ∈ Ki (x∗−i), x̃ ∈ X . Then, 〈F(x∗), x̃ − x∗〉 < 0, which is a contradiction.

(�) See the example in Sect. 3 of [16]. ��
When the constraints are explicitly given as equalities and inequalities with a suit-

able constraint qualification holding, we can compute a solution to the equilibrium
problems using their associated MCP and vice versa. Throughout this section, by a
suitable constraint qualification we mean a constraint qualification implying the KKT
conditions hold at a local optimal solution, for example theMangasarian-Fromovitz or
the Slater constraint qualification.1 Also when we say a constraint qualification holds
at x , we imply that it holds at xi ∈ Ki (x−i) for each agent i .

Proposition 3 Suppose that Ki (x−i) = {xi ∈ [li , ui] | hi (xi , x−i) = 0, gi (xi , x−i) ≤
0} where hi (·) : R

n → R
vi is an affine function, each gi (·) : R

n → R
mi is continu-

ously differentiable and a convex function of xi and li ≤ ui , li ∈ R
ni ∪ {−∞}ni , and

ui ∈ R
ni ∪ {∞}ni . With the same assumptions on fi and G given in Proposition 1, x∗

is a solution to (2) if and only if (x∗, λ∗, μ∗) is a solution to theMCP(B, F), assuming
that a suitable constraint qualification holds at x∗ with

B =
N+1∏

i=1

[li , ui] × R
v × R

m−, v =
N+1∑

i=1

vi , m =
N+1∑

i=1

mi ,

F(x, λ, μ) = ((∇x1 f1(x) − ∇x1h1(x)λ1 − ∇x1g1(x)μ1)
�, . . . ,

1 Under convex differentiable inequalities and no equalities, both constraint qualifications are equivalent
[31].

123

Solving equilibrium problems using extended mathematical programming 463

(∇xN fN (x) − ∇xN hN (x)λN − ∇xN gN (x)μN)�,

(G(x) − ∇xN+1hN+1(x)λN+1 − ∇xN+1gN+1(x)μN+1)
�,

h1(x)
�, . . . , hN+1(x)

�,

g1(x)
�, . . . , gN+1(x)

�)�.

Proof (⇒) Let x∗ be a solution to (2). From the KKT conditions and constraint
qualification at x∗, there exists (λ∗, μ∗) such that

∇xi fi (x
∗) − ∇xi hi (x

∗)λ∗
i −∇xi gi (x

∗)μ∗
i ⊥ li ≤ x∗

i ≤ui , for i =1, . . . , N ,

G(x∗)−∇xi hi (x
∗)λ∗

i −∇xi gi (x
∗)μ∗

i ⊥ li ≤ x∗
i ≤ui , for i =N + 1,

0=hi (x
∗) ⊥ λ∗

i free, for i =1, . . . , N+1,

0≥gi (x
∗) ⊥ μ∗

i ≤0, for i =1, . . . , N+1.

(3)

Thus (x∗, λ∗, μ∗) is a solution to the MCP(B, F).
(⇐) Let (x∗, λ∗, μ∗) be a solution to the MCP(B, F). Then (x∗, λ∗, μ∗) sat-

isfies (3). Since the constraint qualification holds at x∗, we have NKi (x∗−i)
(x∗

i) =
{−∇xi hi (x

∗)λi − ∇xi gi (x
∗)μi | 0 = hi (x∗) ⊥ λi , 0 ≥ gi (x∗) ⊥ μi ≤ 0} +

N[li ,ui](x∗
i) for i = 1, . . . , N + 1. The result follows from convexity. ��

If the convexity assumptions on the objective functions and the constraints of opti-
mization agents’ problems do not hold, then one can easily check that a stationary
point to (2) is a solution to the MCP model defined in Proposition 3 and vice versa.
By a stationary point, we mean that x∗

i satisfies the first-order optimality conditions of
each optimization agent i’s problem, and x∗

N+1 is a solution to the equilibrium agent’s
problem.

Finally, we present the equivalence between QVIs and MCPs.

Proposition 4 For a given QVI(K , F), suppose that K (x) = {l ≤ y ≤ u | h(y, x) =
0, g(y, x) ≤ 0} where h : R

n×n → R
v and g : R

n×n → R
m. Assuming that a

suitable constraint qualification holds, x∗ is a solution to the QVI(K , F) if and only
if (x∗, λ∗, μ∗) is a solution to the MCP(B, F̃) where

B = [l, u] × R
v × R

m−,

F̃(x, λ, μ) =
⎡

⎣
F(x) − ∇yh(x, x)λ − ∇yg(x, x)μ

h(x, x)
g(x, x)

⎤

⎦

Proof By applying similar techniques used in the proof of Proposition 3, we get the
desired result. ��

For a given equilibrium problem or quasi-variational inequality, our framework
generates the MCP model defined in Propositions 3 and 4, respectively, and solves it
using Path. If the feasible region is defined by a shared constraint, users can choose

123

464 Y. Kim, M. C. Ferris

between the VI defined in Proposition 2 and the MCP by specifying the solution type.
This will be discussed in Sect. 4. Other extensions are found in Sects. 5 and 6. While
this constitutes one method of solution, the ability to define the structured equilibria
explicitly opens the door for new solution methods [18].

3 Modeling equilibrium problems using the existing EMP framework

Wenowdescribe how to specify equilibriumproblems inmodeling languages using the
EMP framework. While this is implemented in GAMS syntax, the extension to other
modeling systems is straightforward. We first present the underlying assumptions on
the specification and discuss their limitations in Sect. 3.1. Examples from the literature
are given in Sect. 3.2. In Sects. 4 and 5, we relax these assumptions to take more
sophisticated structures into account.

3.1 Specifying equilibrium problems and underlying assumptions

Standard equilibrium problems can be specified in modeling languages using our
framework. Suppose that we are given the following NEP:

find (x∗
1 , . . . , x

∗
N) satisfying,

x∗
i ∈ argmin

xi
fi (xi , x

∗−i),

subject to hi (xi) = 0,

gi (xi) ≤ 0, for i = 1, . . . , N .

(4)

We need to specify each agent’s variables, its objective function, and constraints.
Functions and constraints (collectively equations) are given as a closed-form in mod-
eling languages: they are explicitly written using combinations ofmathematical opera-
tors such as summation,multiplication, square root, log, and so on. The EMPpartitions
the variables and equations among the agents using annotations given in an empinfo
file. For example, we may formulate and solve (4) within GAMS/EMP as follows:

Listing 1 Modeling the NEP

1 variables obj(i), x(i);
2 equations deff(i), defh(i), defg(i);

4 * Definitions of deff(i), defh(i), and defg(i) are omitted
for expository purposes.

6 model nep / deff , defh , defg /;

8 file empinfo / ’%emp.info%’ /;
9 put empinfo ’equilibrium ’ /;

10 loop(i,
11 put ’min’, obj(i), x(i), deff(i), defh(i), defg(i) /;
12);
13 putclose;

15 solve nep using emp;

123

Solving equilibrium problems using extended mathematical programming 465

Let us explain Listing 1. Variable obj(i) holds the value of fi (x), x(i) rep-
resents variable xi , and deff(i), defh(i), and defg(i) are the closed-form
definitions of the objective function fi (x) and the constraints hi (xi) and gi (xi), respec-
tively, for i = 1, . . . , N . Equations listed in the model statement and variables in these
equations constitute the model nep.

Once the model is defined, a separate empinfo file is created to specify the equi-
librium problem. In the above case, the empinfo file has the following contents:

equilibrium
min obj(‘1’) x(‘1’) deff(‘1’) defh(‘1’) defg(‘1’)
...
min obj(‘N’) x(‘N’) deff(‘N’) defh(‘1’) defg(‘N’)

The equilibrium keyword informs EMP that the annotations are for an equilib-
rium problem. A list of agents’ problem definitions separated by either a min or max
keyword for each optimization agent follows. For each min or max keyword, the
objective variable to optimize and a list of agent’s decision variables are given. After
these variables, a list of equations that define the agent’s objective function and con-
straints follows. We say that variables and equations listed are owned by the agent.
Note that variables other than x(‘1’) that appear in deff(‘1’), defh(‘1’),
or defg(‘1’) are treated as parameters to the first agent’s problem; that is how we
define x−i . The way each agent’s problem is specified closely resembles its algebraic
formulation (4), and our framework reconstructs each agent’s problem by reading the
empinfo file.

The framework does not require any special keyword to distinguish between a NEP
and a GNEP. If the constraint hi or gi is defined using other agents’ decisions, that
is, hi (xi , x−i) = 0 or gi (xi , x−i) ≤ 0, the equilibrium model written in Listing 1
becomes a GNEP. The distinction between the NEP and the GNEP depends only on
how the constraints are defined.

Note that in the empinfo file above, each variable and equation is owned exclu-
sively by a single agent. There is no unassigned variable or equation. In the standard
framework, neither multiple ownership nor missing ownership are allowed; otherwise
an error is generated. Formally, the standard framework assumes the following:

Assumption 1 A model of an equilibrium problem described by equations and vari-
ables is assumed to have the following properties in the empinfo file:

– Each equation of the model is owned by a single agent.
– Each variable of the model is owned by a single agent.

An implication of Assumption 1 is that the current framework does not allow shared
objective functions, shared constraints, and shared variables. Sections 4 and 5 give
examples of problems that violate Assumption 1 and provide techniques to overcome
or relax the requirements.

TheMOPECmodel can be defined in a very similar way. Suppose that we are given
the following MOPEC:

123

466 Y. Kim, M. C. Ferris

find (x∗
1 , . . . , x

∗
N , p∗) satisfying,

x∗
i ∈ argmin

xi
fi (xi , x

∗−i),

subject to hi (xi , x
∗−i) = 0,

gi (xi , x
∗−i) ≤ 0, for i = 1, . . . , N ,

p∗ ∈ SOL(K (x∗), V (p, x∗)),
where K (x∗) := {p | w(p, x∗) ≤ 0}.

(5)

Assuming that p ∈ R
r , we can then formulate (5) within GAMS/EMP in the following

way:

Listing 2 Modeling the MOPEC

1 variables obj(i), x(i), p(j);
2 equations deff(i), defh(i), defg(i), defV(j), defw;

4 model mopec / deff , defh , defg , defV , defw /;

6 file empinfo / ’%emp.info%’ /;
7 put empinfo ’equilibrium ’ /;
8 loop(i,
9 put ’min’, obj(i), x(i), deff(i), defh(i), defg(i) /;

10);
11 put ’vi defV p defw’ /;
12 putclose empinfo;

In addition to optimization agents, we now have an equilibrium agent defined with
the ’vi’ keyword in Listing 2. The ’vi’ keyword is followed by variables, function-
variable pairs, and constraints. Functions pairedwith variables constitute aVI function,
and the order of functions and variables appeared in the pair is used to determinewhich
variable is assigned to which function when we compute the inner product in the (VI)
definition. In this case, we say that each VI function is matched with each variable
having the same order in the pair, i.e., defV(j) is matched with p(j) for each
j = 1, . . . , r . After all matching information is described, constraints follow. Hence,
the VI function is defV, its variable is p, and defw is a constraint. The functions fi ,
hi , and gi , defined in deff(i), defh(i), and defg(i) equations, respectively,
may now include the variable p. One can easily verify that the specification in the
empinfo file satisfies Assumption 1.

Variables, that are used only to define the constraint set and are owned by the VI
agent, must be specified before any explicit function-variable pairs. In this case, we
call those variables preceding variables. The interface automatically assigns them to
a zero function, that is, a constant function having zero value. For example, if we
construct a VI agent from the KKT conditions of maxy,z y2 subject to y2 + z2 ≤ 1,
then the VI function has variable y only, and variable z appears only in the constraint.
We could specify ‘vi z Fy y cons’ in this case, where Fy(y, z) ≡ 2y and
cons corresponds to {(y, z) | y2 + z2 ≤ 1}, and z becomes a preceding variable. Our

123

Solving equilibrium problems using extended mathematical programming 467

interface then automatically creates an artificial function Fz defined by Fz(z, y) ≡ 0
and matches it with variable z.

3.2 Examples

Examples of NEP, GNEP, and MOPEC taken from the literature are formulated in the
following sections using the EMP framework.

3.2.1 NEP

We consider the following oligopolistic market equilibrium problem [14,23]:

find (q∗
1 , . . . , q∗

5) satisfying,

q∗
i ∈ argmax

qi≥0
qi p

⎛

⎝
5∑

j=1, j �=i

q∗
j + qi

⎞

⎠ − fi (qi),

where p(Q) := 50001/1.1(Q)−1/1.1,

fi (qi) := ciqi + βi

βi + 1
K−1/βi
i q(βi+1)/βi

i ,

(ci , Ki , βi) is problem data, for i =1, . . . , 5.

(6)

There are five firms, and each firm provides a homogeneous product with amount
qi to the market while trying to maximize its profit in a noncooperative way. The
function p(·) is the inverse demand function, and its value is determined by the sum
of the products provided by all the firms. The function fi (·) is the total cost of firm i .
The problem (6) is a NEP.

Listing 3 shows an implementation of (6) within GAMS/EMP.2 As we see, the
empinfo file is a natural translation of the algebraic form of (6). Using the same
starting value as in [14,23], our GAMS/EMP implementation computed a solution
q∗ = (36.933, 41.818, 43.707, 42.659, 39.179)� that is consistent with the one
reported in those papers.

2 The resulting MCP model can be obtained by either running the GAMS with keep=1 or storing it in a
file named using the option filename in an option file jams.opt. In the former case, the MCP model is
stored in a file emp.dat in the scratch directory, e.g., 225a. In the latter case, refer to http://www.gams.
com/latest/docs/S_JAMS.html for more details.

123

http://www.gams.com/latest/docs/S_JAMS.html
http://www.gams.com/latest/docs/S_JAMS.html

468 Y. Kim, M. C. Ferris

Listing 3 Implementation of the NEP (6) within GAMS/EMP

1 sets i agents / 1*5 /;
2 alias(i,j);

4 parameters c(i) / 1 10, 2 8, 3 6, 4 4, 5 2 /,
5 K(i) / 1 5, 2 5, 3 5, 4 5, 5 5 /,
6 beta(i) / 1 1.2 , 2 1.1 , 3 1.0 , 4 0.9 , 5 0.8 /;

8 variables obj(i);
9 positive variables q(i);

11 equations objdef(i);

13 objdef(i)..
14 obj(i) =e= q(i)*5000**(1 .0/1.1)*sum(j, q(j))**(-1.0/1

.1) - (c(i)*q(i) + beta(i)/(beta(i)+1)*K(i)**(-1/
beta(i))*q(i)**((beta(i)+1)/beta(i)));

16 model nep / objdef /;

18 file empinfo / ’%emp.info%’ /;
19 put empinfo ’equilibrium ’ /;
20 loop(i,
21 put ’max’, obj(i), q(i), objdef(i) /;
22);
23 putclose empinfo;

25 q.l(i) = 10;
26 solve nep using emp;

3.2.2 GNEP

We use the following GNEP example derived from the QVI example of [25, p. 14]:

find (x∗
1 , x

∗
2) satisfying,

x∗
1 ∈ argmin

0≤x1≤11
x21 + 8

3
x1x

∗
2 − 100

3
x1,

subject to x1 + x∗
2 ≤ 15,

x∗
2 ∈ argmin

0≤x2≤11
x22 + 5

4
x∗
1 x2 − 22.5x2,

subject to x∗
1 + x2 ≤ 20.

(7)

In (7), each agent solves a strongly convex optimization problem. Not only the
objective functions but also the feasible region of each agent is affected by other
agent’s decision. Hence it is a GNEP. Listing 4 shows an implementation of (7) within
GAMS/EMP. Our model has computed a solution (x∗

1 , x
∗
2) = (10, 5) that is consistent

with the one reported in [25]. In Sect. 6.2, we show that (7) can be equivalently
formulated as a QVI using our extension to the EMP framework.

123

Solving equilibrium problems using extended mathematical programming 469

Listing 4 Implementation of the GNEP (7) within GAMS/EMP

1 set i / 1*2 /;
2 alias(i,j);

4 variable obj(i);
5 positive variable x(i);

7 equation defobj(i), cons(i);

9 defobj(i)..
10 obj(i) =E=
11 (sqr(x(i)) + 8/3*x(i)*x(’2’) - 100/3*x(i))$(i.val eq

1) +
12 (sqr(x(i)) + 5/4*x(’1’)*x(i) - 22.5*x(i))$(i.val eq 2)

;

14 cons(i)..
15 sum(j, x(j)) =L= 15$(i.val eq 1) + 20$(i.val eq 2);

17 x.up(i) = 11;

19 model gnep / defobj , cons /;

21 file empinfo / ’%emp.info%’ /;
22 put empinfo ’equilibrium ’ /;
23 loop(i,
24 put ’min’, obj(i), x(i), defobj(i), cons(i) /;
25);
26 putclose empinfo;

28 solve gnep using emp;

3.2.3 MOPEC

We present a general equilibrium example in economics [22, Sect. 3] and model it
as a MOPEC. While [22] formulated the problem as a complementarity problem by
using the closed form of the utility maximizing demand function, we formulate it
as a MOPEC by explicitly introducing a utility-maximizing optimization agent (the
consumer) to compute the demand.

Let us briefly explain the general equilibriumproblemwe consider.We use the nota-
tions and explanation from [22]. There are three types of agents: (i) profit-maximizing
producers; (ii) utility-maximizing consumers; (iii) a market determining the price of
commodities based on production and demand. The problem is given with a technol-
ogy matrix A, an initial endowment b, and the demand function d(p). The coefficient
ai j > 0 (or ai j < 0) of A indicates output (or input) of commodity i for each unit
activity of producer j . For a given price p, d(p) is the demand of consumers maximiz-
ing their utilities within their budgets, where budgets depend on the price p and initial
endowment b. Assuming that y, x , and p represent activity of producers, demands
of consumers, and prices of commodities, respectively, we say that (y∗, x∗, p∗) is a
general equilibrium if it satisfies the following:

123

470 Y. Kim, M. C. Ferris

No positive profit for each activity −A� p∗ ≥ 0,

No excess demand b + Ay∗ − x∗ ≥ 0,

Nonnegativity p∗ ≥ 0, y∗ ≥ 0,

No activity for earning negative profit (−A� p∗)�y∗ = 0,

and positive activity implies balanced profit,

Zero price for excess supply p∗�(b + Ay∗ − x∗) = 0,

and market clearance for positive price,

Utility maximizing demand x∗ ∈ argmax
x

utility(x),

subject to p∗�x ≤ p∗�b.

(8)

We consider a market where there are a single producer, a single consumer, and
three commodities. To compute the demand function without using its closed form,
we introduce a utility-maximizing consumer explicitly in themodel. Our GAMS/EMP
model finds a solution y∗ = 3, x∗ = (3, 2, 0)�, p∗ = (6, 1, 5)� for α = 0.9 that is
consistent with the one in [22].3 Note that in Listing 5 we kept the price of the second
commodity fixed to 1 as only relative prices are determined in a general equilibrium:
any positive scalar multiplication of equilibrium prices is also equilibrium prices [22,
see p. 3].

Listing 5 Implementation of the MOPEC within GAMS/EMP

1 set i commodities / 1*3/;

3 parameters ATmat(i) technology matrix /1 1, 2 -1 , 3 -1 /,

4 s(i) budget share / 1 0.9 , 2 0.1 , 3 0 /,

5 b(i) endowment / 1 0 , 2 5 , 3 3 /;

7 variable u utility of the consumer;

8 positive variables y activity of the producer ,

9 x(i) Marshallian demand of the consumer ,

10 p(i) prices;

12 equations mkt(i) constraint on excess demand ,

13 profit profit of activity ,

14 udef Cobb -Douglas utility function ,

15 budget budget constraint;

17 mkt(i)..

18 b(i) + ATmat(i)*y - x(i) =G= 0;

20 profit..

21 sum(i, -ATmat(i)*p(i)) =G= 0;

23 udef..

24 u =E= sum(i, s(i)*log(x(i)));

26 budget..

3 x∗
3 = 0 as its budget share s3 is zero.

123

Solving equilibrium problems using extended mathematical programming 471

27 sum(i, p(i)*x(i)) =L= sum(i, p(i)*b(i));

29 model mopec / mkt , profit , udef , budget /;

31 file empinfo / ’%emp.info%’ /;

32 put empinfo ’equilibrium ’ /;

33 put ’max’, u, ’x’, udef , budget /;

34 * We have mkt perp p and profit perp y, the fourth and fifth

conditions of (6).

35 put ’vi mkt p profit y’ /;

36 putclose empinfo;

38 * The second commodity is used as a numeraire.

39 p.fx(’2’) = 1;

40 x.l(i) = 1;

42 solve mopec using emp;

4 Modeling equilibrium problems with shared constraints

This section describes our first extension to model shared constraints and to compute
different types of solutions associated with them.

4.1 Shared constraints and limitations of the existing framework

We first define shared constraints in equilibrium problems, specifically when they are
explicitly given as equalities or inequalities.

Definition 1 In equilibrium problems, if the same constraint, given explicitly as an
equality or an inequality, appears multiple times in different agents’ problem defini-
tions, then it is a shared constraint.

For example, a constraint h(x) ≤ 0 (with no subscript i on h) is a shared constraint
in the following GNEP:

Example 1 Find (x∗
1 , . . . , x

∗
N) satisfying

x∗
i ∈ argmin

xi
fi (xi , x

∗−i),

subject to gi (xi , x
∗−i) ≤ 0,

h(xi , x
∗−i) ≤ 0, for i = 1, . . . , N .

Our definition of a shared constraint allows each agent’s feasible region to be defined
with a combination of shared and non-shared constraints. Our definition subsumes the
cases in [8,9], where each agent’s feasible region is defined by the shared constraint
only: in that situation there are no gi (x)’s. In our framework, the shared constraint can
also be defined over some subset of agents. For expository ease throughout this section,
we use Example 1, but the extension to the more general setting is straightforward.

123

472 Y. Kim, M. C. Ferris

Shared constraints are mainly used to model shared resources among agents. In
the tragedy of commons example [24, Sect. 1.1.2], agents share a capped channel
formulated as a shared constraint

∑N
i=1 xi ≤ 1. Another example is the river basin

pollution game in [17,19], where the total amount of pollutant thrown in the river by
the agents is restricted. The environmental constraints are shared constraints in this
case. More details on how we model these examples can be found in Sect. 4.3.

There are two types of solutions when shared constraints are present. Assume a
suitable constraint qualification holds for each solution x∗ of Example 1. Let μ∗

i be a
multiplier associated with the shared constraint h(x) for agent i at the solution x∗. If
μ∗
1 = · · · = μ∗

N , then we call the solution a variational equilibrium [9,28]. The name
of the solution stems from the fact that if there are no gi (x)’s, then x∗ is a solution to
the VI(X , F) and vice versa by Proposition 2, where X = {x ∈ R

n | h(x) ≤ 0} and
h is a convex function. In all other cases, we call a solution a GNEP equilibrium.

An interpretation from the economics point of view is that, at a variational equilib-
rium, agents have the same marginal value on the resources associated with the shared
constraint (as the multiplier values are the same), whereas at a GNEP equilibrium each
agent may have a different marginal value.

A shared constraint may not be easily modeled using the existing EMP framework.
As each equation must be assigned to a single agent, we currently need to create a
replica of the shared constraint for each agent. For Example 1, we may model it within
GAMS/EMP as follows:

Listing 6 Modeling the GNEP equilibrium via replications

1 variables obj(i), x(i);
2 equations deff(i), defg(i), defh(i);

4 model gnep_shared / deff , defg , defh /;

6 file empinfo / ’%emp.info%’ /;
7 put empinfo ’equilibrium ’ /;
8 loop(i,
9 put ’min’, obj(i), x(i), deff(i), defg(i), defh(i) /;

10);
11 putclose empinfo;

In Listing 6, eachdefh(i) is defined exactly in the sameway for all i = 1, . . . , N :
each of them is a replica of the same equation. This approach is neither natural nor
intuitive compared to its algebraic formulation. It is also difficult to tell if the equation
defh is a shared constraint by just reading the empinfo file. The information that
defh is a shared constraint is lost. This could potentially prevent applying specialized
solution methods, such as the one in [30], for shared constraints.

Another difficulty lies in modeling the variational equilibrium. To compute it, we
need to have the multipliers associated with the shared constraints the same among
the agents. Additional constraints may be required for such conditions to hold; there
is no easy way to force equality without changing the model using the existing EMP
framework.

123

Solving equilibrium problems using extended mathematical programming 473

4.2 Extensions tomodel shared constraints

Our extensions have two new features: (i) we provide a syntactic enhancement that
enables shared constraints to be naturally and succinctly specified in a similar way
to the algebraic formulation; (ii) we define a new EMP keyword that enables switch-
ing between the GNEP and variational equilibrium without modifying each agent’s
problem definition.

To implement shared constraints, we modify Assumption 1 as follows:

Assumption 2 A model of an equilibrium problem described by equations and vari-
ables is assumed to have the following properties in the empinfo file:

– Each objective or VI function of the model is owned by a single agent.
– Each constraint of the model is owned by at least one agent. If a constraint appears
multiple times in different agents’ problem definitions, then it is regarded as a
shared constraint, and it is owned by these agents.

– Each variable is owned by a single agent.

Using Assumption 2, we define shared constraints by placing the same constraint in
multiple agents’ problems. For example, we canmodel Example 1without replications
by changing lines 2 and 8–10 of Listing 6 into the following:

Listing 7 Modeling a shared constraint using a single copy

1 equation deff(i), defg(i), defh;

3 loop(i,
4 put ’min’, obj(i), x(i), deff(i), defg(i), defh /;
5);

In Listing 7, a single instance of an equation, defh, representing the shared con-
straint h(x) ≤ 0 is created and placed in each agent’s problem description. Our
framework then recognizes it as a shared constraint. This is exactly the same way as
its algebraic formulation is specified. Also theempinfo file does not lose the problem
structure: we can easily identify that defh is a shared constraint by reading the file as it
appears multiple times. To allow shared constraints, we need to specify SharedEqu
in the option file jams.opt. Otherwise, multiple occurrences of the same constraint
are regarded as an error. This is simply a safety check to stop non-expert users creating
incorrect models.

In addition to the syntactic extension, we define a new EMP keyword visol to
compute a variational equilibrium associated with shared constraints. By default, a
GNEP equilibrium is computed if no visol keyword is specified. Hence Listing 7
computes a GNEP equilibrium. If we place the following line in the empinfo file
before the agents’ problem descriptions begin, that is, before line 3 in Listing 7, then
a variational equilibrium is computed. The keyword visol is followed by a list of
shared constraints for which each agent owning the constraint must use the same
multiplier.

123

474 Y. Kim, M. C. Ferris

Listing 8 Computing a variational equilibrium

1 put ’visol defh’ /;

Depending on the solution type requested, our framework creates different MCPs.
For a GNEP equilibrium, the framework replicates the shared constraint and assigns a
separate multiplier for each agent owning it. For Example 1, the followingMCP(z, F)

is generated:

F(z) = ((Fi (z)
�)Ni=1)

�, z = ((z�i)Ni=1)
�,

Fi (z) =
⎡

⎣
∇xi fi (x) − ∇xi gi (x)λi − ∇xi h(x)μi

gi (x)
h(x)

⎤

⎦ , zi =
⎡

⎣
xi

λi ≤ 0
μi ≤ 0

⎤

⎦ ,

for i = 1, . . . , N .

(9)

Note that the same equation h(·) is replicated, and a separate multiplier μi is assigned
in (9) for each agent i for i = 1, . . . , N .

If a variational equilibrium is requested, then our framework creates a single
instance of the shared constraint, and a single multiplier is used for that constraint
among agents. Accordingly, we construct the following MCP(z, F) for Example 1:

F(z) = ((Fi (z)
�)Ni=1, Fh(z)

�)�, z = ((z�i)Ni=1, z
�
h)�,

Fi (z) =
[∇xi fi (x) − ∇xi gi (x)λi − ∇xi h(x)μ

gi (x)

]
, zi =

[
xi

λi ≤ 0

]
,

for i = 1, . . . , N ,

Fh(z) = [
h(x)

]
, zh = [

μ ≤ 0
]
.

(10)

In (10), a single multiplier μ is assigned to the shared constraint h(x), and h(x)
appears only once in the MCP. If there are no gi (x)’s, then with a constraint qualifi-
cation the problem exactly corresponds to VI(X , F) of Proposition 2 with the set X
defined as X := {x | h(x) ≤ 0}.

4.3 Examples

We present two GNEP examples having shared constraints in the following sections,
respectively. The first example has a unique solution that is a variational equilib-
rium. Thus, with or without the visol keyword, our framework computes the same
solution. In the second example, multiple solutions exist. Our framework computes
solutions of different types depending on the existence of the visol keyword in this
case.

123

Solving equilibrium problems using extended mathematical programming 475

4.3.1 GNEP with a shared constraint: tragedy of the commons

We consider the tragedy of the commons example [24, Sect. 1.1.2]:

find (x∗
1 , . . . , x

∗
N) satisfying,

x∗
i ∈ argmax

0≤xi≤1
xi

⎛

⎝1 −
⎛

⎝xi +
N∑

j=1, j �=i

x∗
j

⎞

⎠

⎞

⎠ ,

subject to xi +
N∑

j=1, j �=i

x∗
j ≤ 1.

(11)

There is a shared channel with capacity 1, represented as a shared constraint∑N
j=1 x j ≤ 1, through which each agent i sends xi units of flow. The value agent

i obtains by sending xi units is xi
(
1 − ∑N

j=1 x j
)
, and each agent tries to maximize

its value. By the form of the problem, (11) is a GNEP with a shared constraint.
The problem has a unique equilibrium x∗

i = 1/(N+1) for i = 1, . . . , N . The value
of agent i is then 1/(N +1)2, and the total value over all agents is N/(N +1)2 ≈ 1/N .
As noted in [24], if agents choose to use

∑N
i=1 xi = 1/2, then the total value will be

1/4 which is much larger than 1/N for large enough N . This is why the problem is
called the tragedy of the commons.

We model (11) within GAMS/EMP in Listing 9. A single constraint cap is defined
for the shared constraint, and the same equation cap appears in each agent’s problem
definition in the empinfo file.

Listing 9 Implementation of the GNEP (11) within GAMS/EMP

1 $if not set N $set N 5

3 set i / 1*%N% /;
4 alias(i,j);

6 variables obj(i);
7 positive variables x(i);

9 equations defobj(i), cap;

11 defobj(i)..
12 obj(i) =E= x(i)*(1 - sum(j, x(j)));

14 cap..
15 sum(i, x(i)) =L= 1;

17 model m / defobj , cap /;

19 file info / ’%emp.info%’ /;
20 put info ’equilibrium ’ /;
21 loop(i,
22 put ’max’, obj(i), x(i), defobj(i), cap /;
23);
24 putclose;

123

476 Y. Kim, M. C. Ferris

26 x.up(i) = 1;

28 * Specify SharedEqu option in the jams.opt file to allow
shared constraints.

29 $echo SharedEqu > jams.opt
30 m.optfile = 1;

32 solve m using emp;

By default, a GNEP equilibrium is computed. If we want to compute a variational
equilibrium, we just need to place the following line right after line 20 in Listing 9.

1 put ’visol cap’ /;

As the solution is unique x∗
i = 1/(N +1)with multiplierμ∗

i = 0 for i = 1, . . . , N ,
our framework computes the same solution in both cases.

4.3.2 GNEP with shared constraints: river basin pollution game

We present another example where we have different solutions for GNEP and varia-
tional equilibria. The example is the river basin example [17,19] described below:

find (x∗
1 , x

∗
2 , x

∗
3) satisfying,

x∗
i ∈ argmin

xi≥0
(c1i + c2i xi)xi −

⎛

⎝d1 − d2

⎛

⎝
3∑

j=1, j �=i

x∗
j + xi

⎞

⎠

⎞

⎠ xi ,

subject to
3∑

j=1, j �=i

(
u jme j x

∗
j

)
+ uimei xi ≤ Km,

for m = 1, 2, i = 1, 2, 3,

where (c, d, e, u, K) is problem data.

(12)

It has two shared constraints, and they are shared by all the three agents.
Let us briefly explain the model. There are three agents near a river, each of which

pursues maximum profit by producing some commodities. The term (c1i + c2i xi)xi
denotes the total cost of agent i , and (d1 − d2(

∑3
j=1, j �=i x

∗
j + xi))xi is the revenue.

Each agent can throw pollutant in the river, but its amount is limited by the two shared
constraints in (12).

Listing 10 shows an implementation of (12) within GAMS/EMP. The two shared
constraints are represented in the equations cons(m). We first compute a variational
equilibrium. A solution computed by our framework is x∗ = (21.145, 16.028, 2.726)
with multipliers μ∗

cons1 = −0.574 and μ∗
cons2 = 0 for the shared constraints

cons(‘1’) and cons(‘2’), respectively.4 Note that a different variational equi-
librium (or also called a normalized equilibrium [28]) can be computed by changing the

4 We used the vector form for the constraints when we declare the equation cons for each agent in the
empinfo file so that we do not have to loop through the set m.

123

Solving equilibrium problems using extended mathematical programming 477

scale factors of the objective variables. If we uncomment the code on lines 50-51, then
the scale factor 1/i for i = 1, . . . , 3 is multiplied to agent i’s objective function value.
In this case, we obtain a different variational equilibrium x∗ = (26.650, 10.709, 0)
with multipliers μ∗

cons1 = −0.531 and μ∗
cons2 = 0.

If we compute a GNEP equilibrium by deleting line 40 in Listing 10, then we find
a solution x∗ = (0, 6.473, 22.281). In this case, multiplier values associated with the
shared constraints for each agent are as follows:

μ∗
cons1,1 = −0.804, μ∗

cons1,2 = −1.504, μ∗
cons1,3 = −0.459,

μ∗
cons2,1 = μ∗

cons2,2 = μ∗
cons2,3 = 0

Listing 10 Implementation of (12) within GAMS/EMP

1 sets i / 1*3 /
2 m / 1*2 /;
3 alias(i,j);

5 parameters
6 K(m) / 1 100, 2 100 /
7 d1 / 3 /
8 d2 / 0.01 /
9 e(i) / 1 0.5 , 2 0.25 , 3 0.75 /;

11 table c(m,i)
12 1 2 3
13 1 0.1 0.12 0.15
14 2 0.01 0.05 0.01;

16 table u(i,m)
17 1 2
18 1 6.5 4.583
19 2 5.0 6.250
20 3 5.5 3.750;

22 variables obj(i);
23 positive variables x(i);

25 equations
26 objdef(i)
27 cons(m);

29 objdef(i)..
30 obj(i) =E= (c(’1’,i) + c(’2’,i)*x(i))*x(i) - (d1 - d2*

sum(j, x(j)))*x(i);

32 cons(m)..
33 sum(i, u(i,m)*e(i)*x(i)) =L= K(m);

35 model m_shared / objdef , cons /;

37 file empinfo / ’%emp.info%’ /;
38 put empinfo ’equilibrium ’ /;
39 * Comment out the following line to compute a GNEP

equilibrium.

123

478 Y. Kim, M. C. Ferris

40 put ’visol cons’ /;
41 loop(i,
42 put ’min’, obj(i), x(i), objdef(i), ’cons’ /;
43);
44 putclose empinfo;

46 $echo SharedEqu > jams.opt
47 m_shared.optfile = 1;

49 * Uncomment the code below if we want to compute a
normalized equilibrium.

50 * obj.scale(i) = ord(i);
51 * m_shared.scaleopt = 1;

53 solve m_shared using emp;

55 * Uncomment the code below to retrieve multipliers when a
GNEP solution is computed.

56 * parameters cons_m(m,i);
57 * execute_load ’%gams.scrdir %/ ugdx.dat ’, cons_m=cons;

Note that since we only have a single constraint cons in the modeling system, the
lines 51–53 show how to recover a multiplier value for each agent owning the shared
constraint.

5 Modeling equilibrium problems using shared variables

In this section, we introduce implicit variables and their uses as shared variables.
Roughly speaking, the values of implicit variables are implicitly defined by other
variable values. Shared variables are implicit variables whose values are shared by
multiple agents.5 For example, state variables controlled by multiple agents in eco-
nomics, but that need to have the same values across the problem, could be shared
variables. In this case, our framework allows a single variable to represent such shared
variables. This not only improves clarity of the model and facilitates deployment of
different mixed behavior models, but also provides a way of significantly improving
performance with efficient formulations. In Sect. 5.1, implicit variables and shared
variables are defined. Sect. 5.2 presents various MCP formulations for them. Finally,
in Sect. 5.3, we present examples of using shared variables and experimental results
comparing various MCP formulations.

5.1 Implicit variables and shared variables

Definition 2 We call a variable y an implicit variable if for each x there is at most one
y satisfying (y, x) ∈ X . Here the set X is called the defining constraint of variable y.

5 A similar concept was introduced as common decision variables in multi-leader-common-follower games
[20]. However, it is the responsibility of solution methods that guarantees the same values at an equilibrium
in their setting. In contrast, our definition of shared variables ensures that they will have the same values at
all equilibria regardless of solution methods.

123

Solving equilibrium problems using extended mathematical programming 479

Note that Definition 2 is not associated directly with equilibrium problems. It states
that there exists one and only one implicit function g(·) such that (g(x), x) ∈ X . A
simple example is X = {(y, x) | y = ∑n

i=1 xi }. We do not check for uniqueness
however. Our current implementation only allows the defining constraint X to be
represented as a system of equations and the implicit variable y to be declared as a
free variable. They also need to be of the same size. Constraints including bounds on
variable y can be introduced by explicitly defining them in additional equations. This
is for allowing different solution types discussed in Sect. 4 to be associated with them.

Based on Definition 2, we define a shared variable.

Definition 3 In equilibrium problems, variables yi ’s are shared variables if there is a
set X such that

– The feasible region of agent i is given by

Ki (x−i) := {(yi , xi)∈R
ny×ni | (yi , xi)∈Xi (x−i), (yi , xi , x−i) ∈ X}, for i=1, . . . , N . (13)

– yi ’s are implicit variables with the same defining constraint X .

Basically, shared variables are implicit variables with an additional condition that
they have the same defining constraint. One can easily verify that if (y1, . . . , yN , x) ∈
K (x) := ∏N

i=1 Ki (x−i), then y1 = · · · = yN , that is, variables yi ’s share their
values. An extension to the case where they are shared by some subset of agents is
straightforward.

An equilibrium where shared variables yi ’s are present is defined as follows:

find (y∗, x∗
1 , . . . , x

∗
N , x∗

N+1) satisfying,

(y∗, x∗
i) ∈ argmin

(y,xi)∈Ki (x∗−i)

fi (y, xi , x
∗−i), for i = 1, . . . , N ,

x∗
N+1 ∈ SOL(KN+1(x

∗
−(N+1)), F(·, x∗

−(N+1))).

(14)

Example 2 presents the use of a shared variable assuming that y is an implicit
variable with its defining constraint X := {(y, x) | H(y, x) = 0}.
Example 2 The variable y is a shared variable of the following equilibrium problem:

find (y∗, x∗
1 , . . . , x

∗
N) satisfying,

(y∗, x∗
i) ∈ argmin

y,xi
fi (y, xi , x

∗−i),

subject to H(y, xi , x
∗−i) = 0, for i = 1, . . . , N ,

where H : R
m+n → R

m, y ∈ R
m

Listing 11 presents GAMS code to model Example 2. We introduce a new keyword
implicit to declare an implicit variable and its defining constraint. Theimplicit
keyword is followed by a list of variables and constraints, and our framework augments
them to form a single vector of implicit variables and its defining constraint. It is

123

480 Y. Kim, M. C. Ferris

required that the keyword should come first before any agent’s problem definition.
We can identify that y is a shared variable in this case as it appears multiple times
in agents’ problem definitions. As the defining equation is assumed to belong to the
implicit variable, we do not place H in each agent’s problem definition (informally
the variable y owns H).

Listing 11 Modeling a shared variable

1 variables obj(i), x(i), y;
2 equations deff(i), defH;

4 model shared_implicit / deff , defH /;

6 file empinfo / ’%emp.info%’ /;
7 put empinfo ’equilibrium ’ /;
8 put ’implicit y defH’ /;
9 loop(i,

10 put ’min’, obj(i), x(i), y, deff(i) /;
11);
12 putclose empinfo;

Bounds on the shared variables can be introduced by explicitly defining them in
additional equations. These bounds could change feasible region hence solutions of the
problem. For example, the following two-agent problem, each of which minimizes its
total cost, has bounds on the shared variable y, and its solution changes as the value of
the upper bound b varies. An implementation of (15) is available at [7]. Our framework
computes (x∗

1 , x
∗
2) = (b/2, b/2) for b ≤ 12 and (x∗

1 , x
∗
2) = (6, 6) for b > 12.

find (y∗, x∗
1 , x

∗
2) satisfying,

(y∗, x∗
i) ∈ argmin

xi≥0,y
xi − xi (10 − 0.5 ∗ y),

subject to y = xi + x∗−i ,

0 ≤ y ≤ b, for i = 1, 2.

(15)

As we now allow shared variables, Assumption 2 needs to be modified as follows:

Assumption 3 A model of an equilibrium problem described by equations and vari-
ables is assumed to have the following properties in the empinfo file:

– Each VI function of the model is owned by a single agent. Each objective function
of the model is owned by at least one agent. The objective function can be owned
by multiple agents when its objective variable is declared as an implicit variable.

– Each constraint of the model is owned by at least one agent. If a constraint appears
multiple times in different agents’ problem definitions, then it is regarded as a
shared constraint owned by these agents.

– Each variable of the model is owned by at least one agent except for an implicit
variable. If a variable appearsmultiple times in different agents’ problemdefinition,
then it is regarded as a shared variable owned by these agents, and it must be an
implicit variable. If there is a variable not owned by any agent, then it must be an
implicit variable.

123

Solving equilibrium problems using extended mathematical programming 481

Note that in Assumption 3 we allow missing ownership for an implicit variable as
its value is well-defined via its defining constraint once the values of other variables
are set. When the ownership is not specified for an implicit variable, our framework
creates a VI agent that owns the variable and its defining constraint: H becomes a VI
function, and y is its matching variable in Example 2. This turns out to be especially
useful to model mixed behavior as described in Sect. 5.3.3.

5.2 Various MCP formulations for shared variables

This section describes various MCP formulations for shared variables. For clarity, we
will use Example 2 to demonstrate our formulations throughout this section. Each
formulation in Sects. 5.2.1, 5.2.2 and 5.2.3 shares the same GAMS code of Listing 11.
Different formulations can be obtained by specifying an appropriate value for the
option ImplVarModel in the file jams.opt. In Sect. 5.3, we present experimental
results comparing the sizes and performance of these formulations.

5.2.1 Replicating shared variables for each agent

In this reformulation, we replicate each shared variable for each agent owning it and
compute the corresponding MCP. For Example 2, our framework creates a variable
yi for agent i , that is a replication of variable y, then computes the KKT conditions.
The following MCP(z, F) is formulated by collecting these KKT conditions:

F(z) = [
(Fi (z)�)Ni=1

]�
, z = [

(z�i)Ni=1

]�
,

Fi (z) =
⎡

⎣
∇xi fi (x, y) − (∇xi H(y, x))μi

∇yi fi (x, y) − (∇yi H(y, x))μi

H(yi , x)

⎤

⎦ , zi =
⎡

⎣
xi
yi
μi

⎤

⎦ .
(16)

The size of (16) is (n + 2mN) where the first term is from n = ∑N
i=1 |xi | and the

second one is from N × (|yi | + |μi |) with |yi | = |μi | = m for each i = 1, . . . , N .
Note that the same constraints H and shared variable y are replicated N times. Table 1
summarizes the sizes of the MCP formulations depending on the strategy. (16) can be
obtained by specifying an option ImplVarModel=Replication in jams.opt.

5.2.2 Switching shared variables with multipliers

We introduce a switching strategy that does not require replications. The switching
strategy uses the fact that in an MCP we can exchange free variables of the same size
in the complementarity conditions without changing solutions.6 For example, if an
MCP is given by

[
F1(z)
F2(z)

]
⊥

[
z1
z2

]
,

6 Note that this could affect the behavior of the underlying solution methods that are sensitive to the row
or column order of the given problem.

123

482 Y. Kim, M. C. Ferris

Table 1 The size of the MCPs
containing shared variables of
Example 2

Strategy Size of the MCP

Replication (n + 2mN)

Switching (n + mN + m)

Substitution (implicit) (n + nm + m)

Substitution (explicit) (n + m)

where zi ’s are free variables, then a solution to the MCP is a solution to the following
MCP and vice versa:

[
F1(z)
F2(z)

]
⊥

[
z2
z1

]
.

Applying the switching technique to shared variables, we switch each shared vari-
ablewith themultipliers associatedwith its defining equations. This is possible because
each shared variable is a free variable and its defining equations are of the same size as
the shared variable. As a by-product, we do not have to replicate the shared variables
and their defining constraints. Thus we can reduce the size of the resultant MCP.

The MCP(z, F) obtained by applying the switching technique to Example 2 is as
follows:

F(z) = [
(Fi (z)�)Ni=1, Fh(z)

�]�
, z = [

(z�i)Ni=1, z
�
h

]�
,

Fi (z) =
[∇xi fi (x, y) − (∇xi H(y, x))μi

∇y fi (x, y) − (∇y H(y, x))μi

]
, zi =

[
xi
μi

]
,

Fh(z) = [
H(y, x)

]
, zh = [

y
]
.

(17)

The size of (17) is (n + mN + m). Note that compared to the replication strategy
the size is reduced by (N − 1)m. The number (N − 1)m exactly corresponds to the
number of additional replications of the shared variable y. The formulation can be
obtained by specifying an option ImplVarModel=Switching in jams.opt.
This is currently the default value for ImplVarModel.

5.2.3 Substituting out multipliers

Wecan apply our last strategywhen the implicit function theoremholds for the defining
constraints. By the implicit function theorem,wemean for (ȳ, x̄) satisfying H(ȳ, x̄) =
0 there exists a unique continuously differentiable function h : R

n → R
m that maps

into some neighborhood of ȳ such that H(h(x), x) = 0 for all x in some neighborhood
of x̄ .

In a single optimization problem with H taking the special form, H(y, x) = y −
h(x), a similar definition was made in the AMPL modeling system, and the variable
y is called a defined variable in this case [13, See A.8.1].

The basic idea is to regard the shared variable y as a function of other non-shared
variables and apply the total derivative. At each solution (y∗, x∗) of the problem,

123

Solving equilibrium problems using extended mathematical programming 483

there exists a locally defined implicit function hx∗(x) such that y∗ = hx∗(x∗) and
H(hx∗(x), x) = 0 for each x in some neighborhood of x∗ by the implicit function the-
orem. We can then remove variable y by replacing it with the implicit function hx∗(x)
near (y∗, x∗). Thus the objective function fi (xi , x−i , y) of agent i on the feasible
set H(y, x) = 0 near (y∗, x∗) can be equivalently represented as fi (xi , x−i , hx∗(x)).
Consequently, the KKT conditions near (y∗, x∗) only involve variable x :

d

dxi
fi (xi , x−i , hx∗(x)) = ∇xi fi (xi , x−i , hx∗(x)) + ∇xi hx∗(x)∇y fi (xi , x−i , hx∗(x)),

y = hx∗(x),

where d/dxi represents the total derivative with respect to variable xi .
By the implicit function theorem, we have

∇xi hx∗(x) = −∇xi H(y, x)∇y H(y, x)−1.

Therefore the KKT conditions of agent i’s problem of Example 2 can be represented
as follows:

0 = ∇xi fi − ∇xi H(∇y H)−1∇y fi ⊥ xi free, for i = 1, . . . , N ,

0 = H(y, x) ⊥ y free,
(18)

where we also applied the switching technique in Sect. 5.2.2.
We can derive the same formulation (18) from another perspective. At a solution

(y∗, x∗, μ∗) to the problem, the matrix ∇y H(y∗, x∗) is non-singular by the implicit
function theorem. Thus we have

0 = ∇y fi (x
∗
i , x∗−i , y

∗) − (∇y H(y∗, x∗))μ∗
i �⇒ μ∗

i

= (∇y H(y∗, x∗))−1∇y fi (x
∗
i , x∗−i , y

∗).
(19)

We can then substitute out every occurrence of μi by the right-hand side of (19) and
remove the left-hand side from consideration. The result is the formulation (18).

A critical issue with applying the formulation (18) is that in general we do not
have the explicit algebraic representation of (∇y H)−1. Computing it explicitly may
be quite expensive and could cause numerical issues.

Instead of explicitly computing it, we introduce new variables �i to replace
∇xi H(∇y H)−1 with a system of equations:

�i∇y H(y, x) = ∇xi H(y, x), for i = 1, . . . , N .

One can easily verify that for each solution (y∗, x∗) to (18) there exists �∗
i satisfying

the following and vice versa:

0 = ∇xi fi − �i∇y fi ⊥ xi free,

0 = �i∇y H − ∇xi H ⊥ �i free, for i = 1, . . . , N

0 = H(y, x) ⊥ y free.

(20)

123

484 Y. Kim, M. C. Ferris

Consequently, the following MCP(z, F) is formulated in this case:

F(z) = [
(Fi (z)�)Ni=1, Fh(z)

�]�
, z = [

(z�i)Ni=1, z
�
h

]�
,

Fi (z) =
[∇xi fi (x, y) − �i∇y fi (x, y)
�i∇y H(y, x) − ∇xi H(y, x)

]
, zi =

[
xi
�i

]
,

Fh(z) = [
H(y, x)

]
, zh = [

y
]
.

(21)

The size of (21) is (n +mn +m). This could be much larger than the one obtained
whenwe apply the switching strategy, whose size is (n+mN+m), because we usually
have n � N . Comparing the size to the case where we replicate the implicit variables,
we have (n + nm + m) ≤ (n + 2mN) if and only if N ≥ (n + 1)/2.

The size of the substitution strategy can be significantly reduced when the shared
variable is explicitly defined, that is, H(y, x) = y − h(x). In this case, the algebraic
representation of (∇y H)−1 is in a favorable form: an identity matrix. We do not have
to introduce new variables and their corresponding system of equations. As we know
the explicit algebraic formulation of ∇xi H , the following MCP is formulated:

F(z) = [
(Fi (z)�)Ni=1, Fh(z)

�]�
, z = [

(z�i)Ni=1, z
�
h

]�
,

Fi (z) = [∇xi fi (x, y) − ∇xi H(y, x)∇y fi (x, y)
]
, zi = [

xi
]
,

Fh(z) = [
H(y, x)

]
, zh = [

y
]
.

(22)

Note that the size of (22) is (n + m). This is a huge saving compared to
other formulations. Our framework automatically detects if a shared variable is
given in the explicit form and substitutes out the multipliers if it is. Otherwise,
(21) is formulated. The formulation can be obtained by specifying an option
ImplVarModel=Substitution in jams.opt.

5.3 Examples

In this section, we introduce three models that use shared variables. Section 5.3.1
describes an example where we can reduce its density significantly by introducing
a shared variable. This enables the problem, previously known as computationally
intractable, to be efficiently solved. Section 5.3.2 presents an economic equilibrium
model where each agent tries to maximize its welfare in the Nash way while trading
goods with other agents subject to general equilibrium conditions. The general equi-
librium conditions define a set of state variables that are shared by all agents. We can
then use the constructs for shared variables to define the state variables. In Sect. 5.3.3,
we present an example of modeling mixed pricing behavior of agents. More exam-
ples on using shared variables, for example modeling shared objective functions, can
be found at [7]. All experiments were performed on a Linux machine with Intel(R)
Core(TM) i5-3340M CPU@2.70 GHz processor and 8GB of memory. Path was set
to use the UMFPACK [5] as its basis computation engine.

123

Solving equilibrium problems using extended mathematical programming 485

5.3.1 Improving sparsity using a shared variable

We consider an oligopolistic energy market equilibrium example [21, Sect. 4] formu-
lated as aGNEP.We show that its sparsity can be significantly improved by introducing
a shared variable, which makes the problem, known as computationally intractable in
[21], solvable. The example is defined as follows:

find (q∗
0 , q∗

1 , . . . , q∗
5) satisfying,

q∗
0 ∈ argmax

0≤q0≤U0

p

(
5∑

i=1

ni∑

k=1

q∗
ik

)(
5∑

i=1

ni∑

k=1

q∗
ik

)
−

5∑

i=1

ci (q
∗
i) − Pq0,

subject to q0 +
5∑

i=1

ni∑

k=1

q∗
ik = d,

q∗
i ∈ argmax

0≤qi≤Ui

p

⎛

⎝
5∑

j=1, j �=i

n j∑

k=1

q∗
jk +

ni∑

k=1

qik

⎞

⎠
(ni∑

k=1

qik

)
− ci (qi),

subject to q∗
0 +

5∑

j=1, j �=i

n j∑

k=1

q∗
jk +

ni∑

k=1

qik = d,

where ci (qi) = 1

2
q�
i Miqi + b�

i qi ,

p(Q) :=
(−P

(1.5d)2
Q2 + P

)
,

(P, d, Mi , bi ,Ui , ni) is problem data, for i=1, . . . , 5.

(23)

Let us briefly describe (23). There are six agents. The first agent is an ISO agent
which controls variable q0 ∈ R measuring deficit of energy. It tries to maximize the
total profit of all the energy supplying agents less the penalty caused by being unable to
meet the fixed demand d. The parameter P represents howmuch penalty we put on the
deficit q0. Each agent i , controlling qi = (qi1, . . . , qini) for i = 1, . . . , 5, is a profit-
maximizing agent that produces homogeneous energy generated from its ni number
of plants. Its decision variable qik denotes the amount of energy produced from its
kth plant for k = 1, . . . , ni . The function p(Q) is a concave inverse demand function,
and ci (qi) is the total cost of producing energy

∑ni
k=1 qik . The matrix Mi is a diagonal

matrix having positive diagonal entries, hence ci (·) is a strongly convex function. All
the six agents share the samedemand constraintq0+∑5

i=1
∑ni

k=1 qik = d; it is a shared

constraint. We use n, n = ∑5
i=1 ni , to denote the total number of plants, and each

energy-producing agent has the same number of plants, ni = n/5 for i = 1, . . . , 5.
In [21], a variational equilibrium was computed by formulating a VI and solving it

using Path. The paper reported that Path started to get much slower for the problem
of size n = 2500, and it was not able to solve problems of sizes n = 5000 and
n = 10,000 due to out of memory error.

123

486 Y. Kim, M. C. Ferris

We have observed that the memory error was due to the high density of the Jacobian
matrix of the MCP: it was almost 100% for all problems. Consequently, the MCP will
have a large number of nonzero entries requiring a huge amount of memory. Also the
linear algebra computation (required by Path for basis computations) time will be
much slower in this case.

The root cause of such a highly dense Jacobian matrix was because of the term∑5
i=1

∑ni
k=1 qik in the price function p(·): for each qik , the term ∂ p(·)/∂qik has all

the variables qi ′k′ . We can make the problem much sparser by introducing a shared
variable z := ∑5

i=1
∑ni

k=1 qik . Mathematically, the problem is defined as follows:

find (z∗, q∗
0 , q∗

1 , . . . , q∗
5) satisfying,

q∗
0 ∈ argmax

0≤q0≤U0

p(z∗)z∗ −
5∑

i=1

ci (q
∗
i) − Pq0,

subject to q0 + z∗ = d,

(z∗, q∗
i) ∈ argmax

z,0≤qi≤Ui

p(z)

(ni∑

k=1

qik

)
− ci (qi),

subject to q∗
0 + z = d,

z =
5∑

j=1, j �=i

n j∑

k=1

q∗
jk +

ni∑

k=1

qik .

(24)

Listing 12 implements (24). We used the visol keyword to compute a variational
equilibrium.We formulate each agent’s problemas aminimization problembyflipping
the sign of its objective function. Therefore, each agent i’s objective function for
i = 1, . . . , 5 is strongly convex, and the ISO agent’s objective function is linear.

Listing 12 Implementation of (24) using a shared variable within GAMS/EMP

1 $if not set n $set n 100
2 $if not set num_agents $set num_agents 5
3 $eval num_plants %n%/% num_agents%
4 $set P 120
5 sets i / 1*% num_agents% /
6 k / 1*% num_plants% /;
7 alias(i,j);

9 variables iso_obj , agent_obj(i), z;
10 positive variables q0 , q(i,k);
11 equations iso_defobj , agent_defobj(i), demand , defz;
12 parameters U0 , U(i,k), M(i,k), b(i,k), d, a;

14 U0 = 5;
15 U(i,k) = uniform (0,10);
16 M(i,k) = uniform (0.4 ,0.8);
17 b(i,k) = uniform (30 ,60);
18 d = 0.8 * sum((i,k), U(i,k));
19 a = -%P% / (1.5 * d)**2;

123

Solving equilibrium problems using extended mathematical programming 487

21 q0.up = U0;
22 q.up(i,k) = U(i,k);
23 q.l(i,k) = 0.8*U(i,k);
24 z.l = sum((i,k), q.l(i,k));

26 iso_defobj..
27 iso_obj =E= %P%*q0
28 + sum(i, 0.5*sum(k, M(i,k)*q(i,k)*q(i,k)) + sum(k, b(i

,k)*q(i,k)))
29 - (a*sqr(z) + %P%)*z;

31 agent_defobj(i)..
32 agent_obj(i) =E=
33 0.5*sum(k, M(i,k)*q(i,k)*q(i,k)) + sum(k, b(i,k)*q(i,k

))
34 - (a*sqr(z) + %P%)*sum(k, q(i,k));

36 demand..
37 q0 + z =E= d;

39 defz..
40 z =E= sum((i,k), q(i,k));

42 model m_oligop / iso_defobj , agent_defobj , demand , defz /;

44 file empinfo / ’%emp.info%’ /;
45 put empinfo ’equilibrium ’ /;
46 put ’implicit z defz’ /;
47 put ’visol demand ’ /;
48 put ’min’, iso_obj , q0 , iso_defobj , demand /;
49 loop(i,
50 put ’min’, agent_obj(i);
51 loop(k, put q(i,k););
52 put z, agent_defobj(i), demand /;
53);
54 putclose empinfo;

56 $echo SharedEqu > jams.opt
57 m_oligop.optfile = 1;

59 solve m_oligop using emp;

Table 2 describes the statistics and performance of (23) over various sizes of plants
and agents.7 The ‘-’ symbol represents that we were not able to obtain the results
because of memory issue. In Tables 2(a) and 2(b), we used the same setup as in
[21]. First, note that the MCP size of the original formulation was the smallest, but
it had the highest density. This resulted in a computationally intractable model for
large n ≥ 10,000. In contrast, using a shared variable and the switching strategy, we
were able to generate much sparser models and consequently to solve all of them.
However, the substitution strategy suffered a similar issue: its high density generated
computationally intractable models for n = 25,000 and 50,000. This was due to the

7 The replication strategy is not allowed in this case as it is ambiguous what variable to replicate for the
ISO agent: the agent uses shared variable z, but it does not own it. Our solver automatically detects this
case and generates an error.

123

488 Y. Kim, M. C. Ferris

Ta
bl
e
2

M
od
el
st
at
is
tic
s
an
d
pe
rf
or
m
an
ce

co
m
pa
ri
so
n
of

(2
3)

us
in
g
Pa

th

n
O
ri
gi
na
l

Sw
itc
hi
ng

Su
bs
tit
ut
io
n

Si
ze

D
en
si
ty

(%
)

Si
ze

D
en
si
ty

(%
)

Si
ze

D
en
si
ty

(%
)

(a
)
M
C
P
m
od

el
st
at
is
tic

s
w
he
n
w
e
ha
ve

1
IS
O
ag
en
ta
nd

5
en
er
gy

-p
ro
du

ci
ng

ag
en
ts

25
00

25
02

99
.9
2

25
08

0.
20

25
03

20
.0
7

50
00

50
02

99
.9
6

50
08

0.
10

50
03

20
.0
4

10
,0
00

10
,0
02

99
.9
8

10
,0
08

0.
05

10
,0
03

20
.0
2

25
,0
00

–
–

25
,0
08

0.
02

–
–

50
,0
00

–
–

50
,0
08

0.
01

–
–

n
O
ri
gi
na
l

Sw
itc
hi
ng

Su
bs
tit
ut
io
n

(M
aj
or
,M

in
or
)

T
im

e
(s
)

(M
aj
or
,M

in
or
)

T
im

e
(s
)

(M
aj
or
,M

in
or
)

T
im

e
(s
)

(b
)
Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
w
he
n
w
e
ha
ve

1
IS
O
ag
en
ta
nd

5
en
er
gy

-p
ro
du

ci
ng

ag
en
ts

25
00

(2
,2
63

9)
57

.7
8

(1
,2

63
0)

1.
30

(1
,2

63
0)

13
.1
8

50
00

(2
,5
36

8)
42

0.
92

(1
,5

35
3)

5.
83

(1
,5

35
3)

91
.0
1

10
,0
00

–
–

(1
,1

05
17

)
22

.0
1

(1
,1

05
17

)
65

2.
03

25
,0
00

–
–

(1
,2

64
08

)
14

8.
08

–
–

50
,0
00

–
–

(1
,5

29
46

)
65

1.
14

–
–

n
Sw

itc
hi
ng

Su
bs
tit
ut
io
n

Si
ze

D
en
si
ty

(%
)

Si
ze

D
en
si
ty

(%
)

(c
)
M
C
P
m
od
el
st
at
is
tic
s
w
he
n
w
e
ha
ve

1
IS
O
ag
en
ta
nd

n/
2
en
er
gy

-p
ro
du

ci
ng

ag
en
ts

25
00

37
53

0.
12

25
03

0.
20

50
00

75
03

0.
06

50
03

0.
10

123

Solving equilibrium problems using extended mathematical programming 489

Ta
bl
e
2

co
nt
in
ue
d

n
Sw

itc
hi
ng

Su
bs
tit
ut
io
n

Si
ze

D
en
si
ty

(%
)

Si
ze

D
en
si
ty

(%
)

10
,0
00

15
,0
03

0.
03

10
,0
03

0.
05

25
,0
00

37
,5
03

0.
01

25
,0
03

0.
02

50
,0
00

75
,0
03

0.
01

50
,0
03

0.
01

n
Sw

itc
hi
ng

Su
bs
tit
ut
io
n

(M
aj
or
,M

in
or
)

T
im

e
(s
)

(M
aj
or
,M

in
or
)

T
im

e
(s
)

(d
)
Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
w
he
n
w
e
ha
ve

1
IS
O
ag
en
ta
nd

n/
2
en
er
gy

-p
ro
du

ci
ng

ag
en
ts

25
00

(1
,2

65
0)

1.
43

(1
,2

65
0)

0.
88

50
00

(1
,5

35
9)

5.
89

(1
,5

35
9)

3.
61

10
,0
00

(1
,1

05
26

)
25

.0
5

(1
,1

05
26

)
15

.7
0

25
,0
00

(1
,2

64
00

)
17

6.
94

(1
,2

64
00

)
10

7.
45

50
,0
00

(1
,5

29
50

)
80

0.
75

(1
,5

29
50

)
47

1.
51

123

490 Y. Kim, M. C. Ferris

total derivative computation. The term
∑

ik qik remained in each component of the
MCP function Fi ∈ R

ni for each agent i . This resulted in a block diagonal Jacobian
matrix consisting of 5 100% dense blocks of size ni × ni for i = 1, . . . , 5.

To see the effect of many agents, we generated problems where each agent now
has 2 plants. Thus for a given n there are n/2 number of energy-producing agents.
Table 2(c) and 2(d) report the model statistics and performance comparison of the
switching and substitution strategies. We did not report experimental results using the
original formulation as the MCP size and the density of its Jacobian matrix were the
same as before. In this case, the substitution strategy showed the best performance. Its
Jacobian matrix was still block diagonal consisting of n/2 blocks, but each block size
was just 2 × 2. This improved the sparsity of the model significantly. The MCP size
of the switching strategy was much larger than that of the substitution as its size is
proportional to the number of agents (see Table 1). This made the strategy two times
slower than the substitution strategy.

5.3.2 Modeling equilibrium problems with equilibrium constraints

We construct an economic equilibrium model8 where data was taken from the GTAP
(Global Trade Analysis Project) 9 database [1]. The model is an exchange model
having 23 agents (countries) where each agent tries to maximize its welfare with
respect to economic variables (equivalently, state variables) and its strategic policy
variables in the Nash way while trading goods with other agents subject to the general
equilibrium conditions. Mathematically, the model is represented as follows:

find (w∗, z∗, t∗) satisfying,

(w∗, z∗, t∗i) ∈ argmax
w,z,ti∈Ti

wi ,

subject to H(w, z, t) = 0,

for i = 1, . . . , 23,

(25)

where wi is a welfare index variable of agent i , z is a vector of endogenous eco-
nomic variables such as prices, quantities, and so on, ti represents a vector of
strategic policy variables of agent i that determines the tariffs on the imports, and
H(·) : R

253×506 → R
253 is a system of nonlinear equations that represents the gen-

eral equilibrium conditions.
A distinguishing feature of the model is that the state variables (w, z) are shared

by the agents, and their values are implicitly determined by the general equilibrium
conditions. This implies that (w, z) are shared variables, and the function H is their
defining constraint. In this case, (w, z) are not given as an explicit function of t in H .

In Table 3, we present experimental results of the three formulations over various
problem sizes by changing the number of agents. The size of H changes accordingly.
We use the replication strategy as a baseline to compare the size and performance of

8 The original model was written by Thomas Rutherford, and was solved by applying the diagonalization
method (Gauss-Seidel) to the nonlinear problem (25) by fixing t variable values belonging to other agents.
We modified the model to use our EMP framework, and it was subsequently solved by Path.

123

Solving equilibrium problems using extended mathematical programming 491

Table 3 MCP model statistics and performance comparison of the economic equilibrium model (25)

Agents Replication Switching Substitution

Size Density (%) Size Density (%) Size Density (%)

5 570 1.66 350 3.34 1230 0.77

10 2290 0.72 1300 1.70 10,210 0.14

15 5160 0.50 2850 1.28 35,190 0.06

20 9180 0.40 5000 1.10 84,420 0.03

23 12,144 0.37 6578 1.03 129,030 0.02

Agents Replication Switching Substitution

(Major, Minor) Time (s) (Major, Minor) Time (s) (Major, Minor) Time (s)

5 (18, 164) 0.33 (18, 173) 0.22 (11, 29) 0.38

10 (17, 279) 1.52 (17, 301) 1.48 (15, 436) 8.14

15 (8, 22) 1.81 (8, 22) 1.68 (129, 19806) 814.73

20 (9, 28) 4.90 (9, 28) 4.73 (13, 461) 104.00

23 (9, 41) 10.07 (9, 41) 8.02 (20, 1451) 368.99

the MCP models. We do not describe the implementation within GAMS/EMP as the
number of lines is long. Refer to [7] for the implementation.

In all settings, the switching strategy was of the smallest MCP size as it did not
replicate or create any variables and equations. Consequently, it showed the best per-
formance in terms of the elapsed time: it was up to 6 times faster than the replication
strategy and 50 times9 than the substitution strategy. Although it performed more
number of iterations on the problem having 10 agents, its time was still faster than
that of the replication strategy. We believe that the smaller problem size led to faster
linear algebra computation.

The substitution strategy was of the largest problem size and showed the slowest
elapsed time. The large sizewas due to the newly introduced variables and equations as
described in Table 1.Although the density of it was the smallest, the number of nonzero
entries was the largest. Hence linear algebra computation became much slower.

5.3.3 Modeling mixed behavior: price-taking and price-making agents

In this example, we show that mixed behavior of firms, switching between price-
takers and price-makers, can be easily modeled using a shared variable. We revisit the
oligopolistic market equilibrium problem in Sect. 3.2.1. Previously, the market was
an oligopolistic market where all the firms were price-makers: they can directly affect
the price by changing their productions. If they have no control over the price, they
become price-takers, that is, the price is an exogenous variable for each firm. In this
case, the market is perfect competitive.

9 We did not include the 15-agent problem in the comparison as we think the slowest performance of the
substitution strategy is due to some numerical difficulties Path encountered.

123

492 Y. Kim, M. C. Ferris

Listing 13 implements ourmixed behaviormodel.We introduce an implicit variable
z that represents the price p(Q) defined in (6). If a firm has ownership of variable z,
then it becomes a price-maker as it has a direct control of it. Otherwise, it is a price-
taker. The first solve on line 32 computes a competitive market equilibrium. As no
firms have ownership of variable z, they are all price-takers in this case. After the first
solve, we compute five different mixed models where firms having indices less than
or equal to j are price-makers at the j th mixed model for j = 1, . . . , 5.

Listing 13 Implementation of mixed behavior of agents within GAMS/EMP

1 sets i agents / 1*5 /;
2 alias(i,j);

4 parameters c(i) / 1 10, 2 8, 3 6, 4 4, 5 2 /
5 K(i) / 1 5, 2 5, 3 5, 4 5, 5 5 /
6 beta(i) / 1 1.2 , 2 1.1 , 3 1.0 , 4 0.9 , 5 0.8 /;

8 variables obj(i), z;
9 positive variables q(i);

11 equations defobj(i), defz;

13 defobj(i)..
14 obj(i) =e= q(i)*z - (c(i)*q(i) + beta(i)/(beta(i)+1)*K

(i)**(-1/ beta(i))*q(i)**((beta(i)+1)/beta(i)));

16 defz..
17 z =e= 5000**(1 .0/1.1)*sum(i, q(i))**(-1.0/1.1);

19 model mixed / defobj , defz /;

21 file empinfo / ’%emp.info%’ /;
22 put empinfo ’equilibrium ’ /;
23 put ’implicit ’, z, defz /;
24 loop(i,
25 put ’max ’, obj(i), q(i), defobj(i) /;
26);
27 putclose empinfo;

29 q.l(i) = 10;
30 z.l = sum(i, q.l(i));

32 solve mixed using emp;

34 parameter objval(i,*), qval(i,*), pval (*), totalobjval (*),
socialwelfare (*);

36 objval(i,’competitive ’) = obj.l(i);
37 qval(i,’competitive ’) = q.l(i);
38 pval(’competitive ’) = z.l;
39 totalobjval(’competitive ’) = sum(i, objval(i,’competitive ’

));
40 socialwelfare(’competitive ’) = (5000**(1 .0/1.1)*11* sum(i,

q.l(i))**(0.1/1.1)
41 - z.l*sum(i, q.l(i))) + totalobjval(’competitive ’);

123

Solving equilibrium problems using extended mathematical programming 493

43 set kind / oligo1 , oligo12 , oligo123 , oligo1234 ,
oligo12345 /;

45 loop(kind ,
46 put empinfo ’equilibrium ’ /;
47 put ’implicit ’, z, defz /;
48 loop(i,
49 if (i.val le ord(kind),
50 put ’max ’, obj(i), q(i), z, defobj(i) /;
51 else
52 put ’max ’, obj(i), q(i), defobj(i) /;
53);
54);
55 putclose empinfo;

57 q.l(i) = 10;
58 z.l = sum(i, q.l(i));

60 solve mixed using emp;

62 objval(i,kind) = obj.l(i);
63 qval(i,kind) = q.l(i);
64 pval(kind) = z.l;
65 totalobjval(kind) = sum(i, objval(i,kind));
66 socialwelfare(kind) = (5000**(1 .0/1.1)*11* sum(i, q.l(i

))**(0.1/1.1)
67 - z.l*sum(i, q.l(i))) + totalobjval(kind);
68);

Table 4 presents firms’ profits and social welfare of various mixed models. We
computed social welfare by adding the consumer surplus to the total profit of the firms.
The consumer surplus was computed by integrating the inverse demand function less
the amount paid by the consumer. In columns starting with “Oligo”, indices of firms
that are price-makers are attached to it. Thus Oligo123 implies that firms with index
1, 2, or 3 are price-makers, and others are price-takers. As expected, (i) the total profit
of the firms was the smallest in the competitive case and the largest in the oligopolistic
case; (ii) each firmmademore profit as it switched fromprice-taker to price-maker; (iii)
the social welfare was the maximized when all firms were price-takers. Interestingly,
switching from a price-taker to a price-maker of a firm made profits of other firms
increase much larger than the one of itself. A similar observation was made in [15]
and was explained as an externality effect.

6 Modeling quasi-variational inequalities

This section introduces a new construct for specifying QVIs within our framework
and presents an example comparing two equivalent ways of defining the equilibrium
problems in either GNEP or QVI form.

123

494 Y. Kim, M. C. Ferris

Table 4 Profits of the firms and social welfare of various mixed models of Listing 13

Profit Competitive Oligo1 Oligo12 Oligo123 Oligo1234 Oligo12345

Firm 1 123.834 125.513 145.591 167.015 185.958 199.934

Firm 2 195.314 216.446 219.632 243.593 264.469 279.716

Firm 3 257.807 278.984 306.174 309.986 331.189 346.590

Firm 4 302.863 322.512 347.477 373.457 376.697 391.279

Firm 5 327.591 344.819 366.543 388.972 408.308 410.357

Total profit 1207.410 1288.273 1385.417 1483.023 1566.621 1627.875

Social welfare 39,063.824 39,050.191 39,034.577 39,022.469 39,016.373 39,015.125

6.1 Specifying quasi-variational inequalities using our framework

Assuming that the feasible region of a QVI(K , F) takes the form K (x) := {y ∈
R
n | h(y, x) = 0, g(y, x) ≤ 0}, Listing 15 shows a generic way of specifying the

QVI(K , F) using our framework. In this case, we call x a parameter variable and y a
variable of interest. Parameter variables could appear in the constraints, however, the
QVI function F must be defined by only variables of interest.

Listing 14 Modeling the QVI

1 variables x(i), y(i);
2 equations defF(i), defh , defg;

4 * Definitions of defF(i), defh , and defg are omitted for
expository purposes.

6 model qvi / defF , defh , defg /;

8 file empinfo / ’%emp.info%’ /;
9 putclose empinfo ’qvi defF y x defh defg’;

11 solve qvi using emp;

To specify QVIs, the empinfo file starts with a new keyword qvi. The syntax is
similar to the one forVIs as described in Sect. 3.1 except that additional variables could
follow right after each function-variable pair. In this case, these additional variables
become parameter variables, and the size of them must be the same as the size of
variables of interest in the preceding pair. Our framework then constructs matching
information between parameter variables and variables of interest. (The same applies
to each preceding variable that is assigned to a zero function, however, in this case an
explicit symbol 0 should be specified to represent a zero function to avoid ambiguity.)
Therefore, in Listing 15, variables y and x are the variable of interest and the parameter
variable, respectively, and each xi is matchedwith yi .When our framework formulates
the corresponding MCP, for each constraint it takes the derivative with respect to y,
and each occurrence of xi is replacedwith yi using thematching information. Note that
if there are no parameter variables, that is, no variables follow each function-variable

123

Solving equilibrium problems using extended mathematical programming 495

pair and each preceding variable, then the problem becomes a VI. In the above case,
the feasible region is a fixed set, K (x) := K , specified by defh and defg.

6.2 Example

We consider the following QVI(K , F) example in [25, p. 14]:

F(y) =
[− 100

3 + 2y1 + 8
3 y2

−22.5 + 5
4 y1 + 2y2

]
,

K (x) = {0 ≤ y ≤ 11 | y1 + x2 ≤ 15, x1 + y2 ≤ 20}
(26)

Listing 15 describes an implementation of (26). As in (26), we use x as a parameter
variable in the implementation. The implementation is a natural translation of its alge-
braic form so that users can focus on the QVI specification itself. Also the empinfo
file retains information about variable types so that we can easily identify which vari-
ables are parameter variables and which are variables of interest. This information
can be potentially exploited for the efficient implementation of solution methods for
QVIs. Our framework computes a solution x∗ = (10, 5) that is consistent with the
one reported in [25].

Listing 15 Implementation of (26) within GAMS/EMP

1 sets i / 1*2 /;
2 alias(i,j);

4 parameter A(i,j);
5 A(’1’,’1’) = 2;
6 A(’1’,’2’) = 8/3;
7 A(’2’,’1’) = 5/4;
8 A(’2’,’2’) = 2;

10 parameter b(i);
11 b(’1’) = 100/3;
12 b(’2’) = 22.5;

14 parameter Cy(i,j), Cx(i,j);
15 Cy(i,j)$(sameas(i,j)) = 1;
16 Cx(i,j)$(not sameas(i,j)) = 1;

18 parameter rhs(i) / 1 15, 2 20 /;

20 variables y(j), x(j);
21 equations F(i), g(i);

23 F(i)..
24 sum(j, A(i,j)*y(j)) - b(i) =N= 0;

26 g(i)..
27 sum(j, Cy(i,j)*y(j)) + sum(j, Cx(i,j)*x(j)) - rhs(i) =

L= 0;

29 model qvi / F, g /;

123

496 Y. Kim, M. C. Ferris

31 file empinfo / ’%emp.info%’ /;
32 putclose empinfo ’qvi F y x g’;

34 * If bounds on y and x are different , then an intersection
of them is taken.

35 y.lo(j) = 0; y.up(j) = 11;
36 x.lo(j) = 0; x.up(j) = 11;

38 solve qvi using emp;

One can easily check that the QVI (26) is equivalent to the GNEP (7) in Sect. 3.2.2
in terms of solutions. Actually, all the equilibrium examples described in previous
sections can be equivalently formulated as QVIs in the manner of Proposition 1.

However, the information provided to our framework could be different depending
on the formulations. The GNEP formulation (7) gives us each agent’s information: its
objective function and ownership of variables and constraints. It may not be easy to
recover this information from the QVI formulation. In general, we can collect more
information from an equilibrium formulation. This could result in different solutions
methods such as a Gauss-Seidel method and its variants, while it may not be possible
to collect similar information from the QVI formulation. Therefore, for equilibrium
problems, it may be better to not use the QVI formulation. Since our QVI framework is
not just limited to QVIs derived from equilibrium problems, it can be used to explicitly
model other types of QVIs with possible specialized algorithms for solution.

7 Conclusions

Wehavepresented an extendedmathematical programming framework for equilibrium
programming. The framework defines a new set of constructs that enable equilibrium
problems with shared constraints and shared variables and their variational forms
to be specified in modeling languages. Its syntax is a natural translation of the cor-
responding algebraic formulation of the problem that captures high-level structure.
This allows more readable and less error prone models to be specified compared to
the traditional complementarity based models that require the derivative computa-
tion of the Lagrangian by hand. Different solution types such as variational equilibria
associated with shared constraints can be easily specified and computed using our
framework. We define shared variables and their associated constructs that can be
used to model sparse formulations, some forms of economic equilibrium problems
sharing states, price-taking and price-making agents, shared objective functions, and
so on. We introduce a new construct for specifying QVIs.

There is potential for future work. Using the high-level information captured by our
framework, we can design decomposition algorithms to solve large-scale equilibrium
problems that may involve a huge number of agents. We intend to allow implicit vari-
ables to be defined using nonsmooth equations [27]. We plan to extend our framework
to incorporate equilibrium problems including agents solving stochastic programs,
bilevel programming, equilibrium problemswith equilibrium constraints, all with con-

123

Solving equilibrium problems using extended mathematical programming 497

sideration of shared constraints and shared variables, and to implement the EMP in
other modeling systems such as AMPL and Julia.

Acknowledgements This material is based upon work supported by the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under con-
tract number DE-AC02-06CH11357.

Appendix

In this Appendix, we present a brief description of our source code and introduce our
recently developed alternative EMP interface that allows set notation to be specified
in the empinfo file. The former may be useful for interested readers to understand
the internal mechanism of our framework, and the latter may provide a concise and
compact way of describing agent information.

Internal mechanism of the EMP equilibrium framework

Basically, our framework performs a model transformation of an EMP model into an
MCPmodel. Key components to implement the transformation are (i) a dictionary, (ii)
an EMP parser, and (iii) expression graphs and their derivative computation routines.

The dictionary contains mapping information between variables and equations of a
given model and its flattened (or scalar) version. Internally, numeric indices are used
to refer to variables and equations, and vector notation (surrounding the name in single
quotes) is flattened. In Table 5, we present an example of the mapping information of
Listing 5. For clarity, we attached characters x and e for variables and equations. This
information can be obtained by specifying Dict option in the option file jams.opt.

The EMP parser reads the empinfo file and builds a table of agent ownership
information of variables and equations using the numeric indices by referring to the
dictionary. The table consists of two arrays of sizes n andm, where they correspond to
the sizes of the variables and equations of the flattened model, respectively. Whenever
the parser encounters the name of a variable or an equation, it identifies its numeric

Table 5 Mapping of variables and equations between the original model and its flattened model

Original variable and equation name Flattened index

u x1

y x2

x(’1’), x(’2’), x(’3’) x3, x4, x5

p(’1’), p(’2’), p(’3’) x6, x7, x8

mkt(’1’), mkt(’2’), mkt(’3’) e1, e2, e3

profit e4

udef e5

budget e6

123

498 Y. Kim, M. C. Ferris

Fig. 1 An example of the agent
ownership table

x1 x2 x3 x4 x5 x6 x7 x8

1 2 1 1 1 2 2 2

e1 e2 e3 e4 e5 e6

2 2 2 2 1 1

index using the dictionary andmarks the ID of the agent owning it in the corresponding
array. Figure 1 shows an example of the agent ownership table ofListing5. It is assumed
that agent ID starts with 1, and its order follows the order of the agents specified in
the empinfo file. For shared constraints and shared variables, special agent IDs are
stored using which we can identify a list of the agents sharing them.

Finally, using the table, the correspondingMCP function is constructed by comput-
ing the KKT conditions of each agent’s problem. This is performed using expression
graphs and their derivative computation routines.

Expression graphs represent nonlinear equations of a model. They take the form of
a sequence of operations. For example, in GAMS, (x + y)3 is internally represented
by a sequence of PushV 1, AddV 2, PushI 3.0, and CallArg2 21, where x
and y are assumed to be mapped to numeric indices 1 and 2, respectively. Operands
are pushed onto the stack first via PushV or PushI before an operation is performed
on them, and its result (if there is any) is pushed back onto the stack. Hence, in this
case, operand x is pushed first, and an addition, which also takes its second operand
y, is performed on them. The result of the addition and a constant 3.0 are pushed onto
the stack, and operation 21, which corresponds to the power, is applied to them. If we
take a derivative of (x + y)3 with respect to x , then a new sequence of PushV 1,
AddV 2, CallArg1 9, and MulI 3.0 is generated, where operation 9 represents
a square (·)2 operation. One can verify that the sequence represents 3(x + y)2. Two
different expression graphs can be easily added (or subtracted) to form an addition (or
a subtraction) of nonlinear equations. Linear equations are handled directly by storing
their coefficients, and their derivative computations are straightforward. In this way,
we can construct the MCP functions described in this paper.

An alternative interface allowing set notation in the empinfo file

So far, we have instantiated sets or used vector notation when we specify agent infor-
mation in the empinfo file. For example, on lines 20–21 in Listing 3 each element
of set i was instantiated by using the loop and put statements, and on lines 33 and
35 in Listing 5 vector notation was used to represent the entire elements of x, mkt,
and p. The main reason we specify in this way is that the current implementation does
not allow a direct specification of sets in the empinfo file.

This could potentially prevent us from taking advantage of using a set notation,
such as a compact representation of a set of variables and equations sharing similar
structure. For example, in Listing 12 we had to take an additional loop over set k to
slice variableq(i,k) among the agents. In the caseswhere there are a large number of
such variables or equations, theymay involvemany tedious loop and put statements
and result in a less concise representation of agents’ problems.

123

Solving equilibrium problems using extended mathematical programming 499

Table 6 Application of the EMP/Set syntax to examples in the paper

Examples Contents of the empinfo file using EMP/Set syntax

Listing 3 equilibrium

max obj(i) s.t. q(i), objdef(i)

Listing 5 equilibrium

max u s.t. x(i), udef, budget

vi mkt(i), p(i), profit, y

Listing 10 equilibrium

visol cons(m)

max obj(i) s.t. x(i), objdef(i), cons(m)

Listing 12 equilibrium

implicit z, defz

visol demand

min iso_obj s.t. q0, iso_defobj, demand

min agent_obj(i) s.t. q(i,k), z, agent_defobj(i),demand

Listing 15 qvi F(i), y(i), x(i), g(i)

To resolve these issues, we provide an alternative interface, called EMP/Set, which
allows sets to be specified in an empinfo file. The EMP/Set interprets a specification
of a set as enumerating all of its elements. For example, in the aforementioned case
we may put q(i,k) directly in the empinfo file without instantiating each element
in set k.

Table 6 shows the contents of the empinfo file obtained by applying the EMP/Set
syntax to some representative examples of this paper.10 Basically, when a set is speci-
fied,11 all of its elements are enumerated by our interface. Thus, specifying cons(m)
using the EMP/Set syntax is equivalent to writing loop(m, put cons(m););. If
a set appears in the objective variable, for example set i in Table 6, then our interface
additionally assumes that a set of optimization agents is specified, where each agent
is indexed by an element of set i. They are assumed to have the same direction to
optimize. This provides a compact way of representing a set of agents that share the
same structure. In this case, set i plays a role as a slicing set.

Other than the set specification, the EMP/Set syntax requires a new keyword s.t.
(implying subject to) for optimization agents and a separator comma between items
(variables and equations). Vector notation is no longer supported as sets can be speci-
fied. All other syntactic requirements are the same as the original syntax, for example
variables come first and equations follow them in the case of an optimization agent.

Below we show how we may use the EMP/Set interface for Listing 3. To write an
EMP specification in a file, we use a pair of macros $onecho and $offecho. It
writes the lines between them in a file, empinfo.txt in this case. Finally, to parse

10 The source code for the examples can be found at [7].
11 Note that aliased sets are not currently supported. For example, if we have alias(i,j), where set i
is the original set, then we do not allow set j to be specified.

123

500 Y. Kim, M. C. Ferris

the file we include the empmodel.gms file using $libinclude macro and pass
the file name as its argument.

Listing 16 An example of using EMP/Set interface

1 $onecho > empinfo.txt
2 equilibrium
3 max obj(i) s.t. q(i), objdef(i)
4 $offecho

6 $libinclude empmodel empinfo.txt

The EMP/Set interface (empmodel.gms) works on top of the existing interface.
For a given file written in the EMP/Set syntax, it will automatically transform the
set specifications into equivalent loop and put statements and generate another file
empinfo.gms in which an empinfo file is written using the original syntax. Then
the resulting file empinfo.gms will be included, and its empinfo specification
will be parsed by the GAMS/JAMS solver.

We believe the combination of the simplified EMP/Set interface and the more
complex and flexible original syntaxwill allow users to easily specify simple structures
and also build more complex EMP models. The implementations are consistent and
can be easily updated to incorporate new features as they are developed.

References

1. Aguiar, A., Narayanan, B., Mcdougall, R.: An overview of the GTAP 9 data base. J. Glob. Econ. Anal.
1(1), 181–208 (2016)

2. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing.
SIAM Rev. 59(1), 65–98 (2017)

3. Britz, W., Ferris, M., Kuhn, A.: Modeling water allocating institutions based on multiple optimization
problems with equilibrium constraints. Environ. Model. Softw. 46, 196–207 (2013)

4. Brook, A., Kendrick, D., Meeraus, A.: GAMS: A User’s Guide. The Scientific Press, South San
Francisco (1988)

5. Davis, T.A.: UMFPACK (2007). http://faculty.cse.tamu.edu/davis/suitesparse.html. Accessed 14 Dec
2017

6. Dirkse, S.P., Ferris, M.C.: The PATH solver: a non-monotone stabilization scheme for mixed comple-
mentarity problems. Optim. Methods Softw. 5(2), 123–156 (1995)

7. An EMP framework for equilibrium problems (2019). http://pages.cs.wisc.edu/~youngdae/emp.
Accessed 16 Feb 2019

8. Facchinei, F., Fischer, A., Piccialli, V.: On generalized Nash games and variational inequalities. Oper.
Res. Lett. 35(2), 159–164 (2007)

9. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Annals of Operations Research
175(1), 177–211 (2010)

10. Ferris, M.C., Dirkse, S.P., Jagla, J.H., Meeraus, A.: An extended mathematical programming frame-
work. Comput. Chem. Eng. 33(12), 1973–1982 (2009)

11. Ferris, M.C., Fourer, R., Gay, D.M.: Expressing complementarity problems in an algebraic modeling
language and communicating them to solvers. SIAM J. Optim. 9(4), 991–1009 (1999)

12. Ferris,M.C.,Munson, T.S.: Interfaces to PATH3.0: design, implementation and usage. Comput. Optim.
Appl. 12(1), 207–227 (1999)

13. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Program-
ming, 2nd edn. Cengage Learning, Boston (2002)

14. Harker, P.T.: A variational inequality approach for the determination of oligopolistic market equilib-
rium. Math. Program. 30, 105–111 (1984)

123

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://pages.cs.wisc.edu/~youngdae/emp

Solving equilibrium problems using extended mathematical programming 501

15. Harker, P.T.: Multiple equilibrium behaviors on networks. Transp. Sci. 22(1), 39–46 (1988)
16. Harker, P.T.: Generalized Nash games and quasi-variational inequalities. Eur. J. Oper. Res. 54, 81–94

(1991)
17. Haurie, A., Krawczyk, J.B.: Optimal charges on river effluent from lumped and distributed sources.

Environ. Model. Assess. 2(3), 177–189 (1997)
18. Kim,Y., Ferris,M.C.: SELKIE: amodel transformation anddistributed solver for structured equilibrium

problems. Technical Report, University of Wisconsin-Madison, Department of Computer Sciences
(2017)

19. Krawczyk, J.B., Uryasev, S.: Relaxation algorithms to findNash equilibria with economic applications.
Environ. Model. Assess. 5(1), 63–73 (2000)

20. Leyffer, S., Munson, T.: Solving multi-leader-common-follower games. Optim. Methods Softw. 25(4),
601–623 (2010)

21. Luna, J.P., Sagastizabal, C., Solodov, M.: A class of Dantzig–Wolfe type decomposition methods for
variational inequalty problems. Math. Program. 143(1), 177–209 (2014)

22. Mathiesen, L.: An algorithm based on a sequence of linear complementarity problems applied to a
Walrasian equilibrium model: an example. Math. Program. 37(1), 1–18 (1987)

23. Murphy, F.H., Sherali, H.D., Soyster, A.L.: A mathematical programming approach for determining
oligopolistic market equilibrium. Math. Program. 24(1), 92–106 (1982)

24. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge Uni-
versity Press, New York (2007)

25. Outrata, J.V., Zowe, J.: A Newton method for a class of quasi-variational inequalities. Comput. Optim.
Appl. 4(1), 5–21 (1995)

26. Philpott,A., Ferris,M.,Wets,R.: Equilibrium, uncertainty and risk in hydro-thermal electricity systems.
Math. Program. 157(2), 483–513 (2016)

27. Robinson, S.M.: Equations on monotone graphs. Math. Program. 141(1), 49–101 (2013)
28. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave N-person games. Economet-

rica 33(3), 520–534 (1965)
29. Rutherford, T.F.: Extension of GAMS for complementarity problems arising in applied economic

analysis. J. Econ. Dyn. Control 19(8), 1299–1324 (1995)
30. Schiro, D.A., Pang, J.S., Shanbhag, U.V.: On the solution of affine generalized Nash equilibrium

problems with shared constraints by Lemke’s method. Math. Program. 142(1), 1–46 (2013)
31. Solodov, M.: Constraint qualifications. In: Cochran, J.J., et al. (ed.), Wiley Encyclopedia of Operations

Research and Management Science. Wiley, Inc. (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Solving equilibrium problems using extended mathematical programming
	Abstract
	1 Introduction
	2 Preliminaries
	3 Modeling equilibrium problems using the existing EMP framework
	3.1 Specifying equilibrium problems and underlying assumptions
	3.2 Examples
	3.2.1 NEP
	3.2.2 GNEP
	3.2.3 MOPEC

	4 Modeling equilibrium problems with shared constraints
	4.1 Shared constraints and limitations of the existing framework
	4.2 Extensions to model shared constraints
	4.3 Examples
	4.3.1 GNEP with a shared constraint: tragedy of the commons
	4.3.2 GNEP with shared constraints: river basin pollution game

	5 Modeling equilibrium problems using shared variables
	5.1 Implicit variables and shared variables
	5.2 Various MCP formulations for shared variables
	5.2.1 Replicating shared variables for each agent
	5.2.2 Switching shared variables with multipliers
	5.2.3 Substituting out multipliers

	5.3 Examples
	5.3.1 Improving sparsity using a shared variable
	5.3.2 Modeling equilibrium problems with equilibrium constraints
	5.3.3 Modeling mixed behavior: price-taking and price-making agents

	6 Modeling quasi-variational inequalities
	6.1 Specifying quasi-variational inequalities using our framework
	6.2 Example

	7 Conclusions
	Acknowledgements
	Appendix
	Internal mechanism of the EMP equilibrium framework
	An alternative interface allowing set notation in the empinfo file

	References

