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Abstract
This paper proposes an algorithm to efficiently solve large optimization problems
which exhibit a column bounded block-diagonal structure, where subproblems differ
in right-hand side and cost coefficients. Similar problems are often tackled using
cutting-plane algorithms, which allow for an iterative and decomposed solution of
the problem. When solving subproblems is computationally expensive and the set of
subproblems is large, cutting-plane algorithmsmay slow down severely. In this context
we propose two novel adaptive oracles that yield inexact information, potentiallymuch
faster than solving the subproblem. The first adaptive oracle is used to generate inexact
but valid cutting planes, and the second adaptive oracle gives a valid upper bound of the
true optimal objective. These two oracles progressively “adapt” towards the true exact
oracle if provided with an increasing number of exact solutions, stored throughout
the iterations. These adaptive oracles are embedded within a Benders-type algorithm
able to handle inexact information. We compare the Benders with adaptive oracles
against a standard Benders algorithm on a stochastic investment planning problem.
The proposed algorithm shows the capability to substantially reduce the computational
effort to obtain an ε-optimal solution: an illustrative case is 31.9 times faster for a 1.00%
convergence tolerance and 15.4 times faster for a 0.01% tolerance.
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1 Introduction

In this paper we consider problems that can be expressed in the form

min
x∈X

f (x) +
∑

i∈I
πi g(xi , ci ), (1)

where g(xi , ci ) is the optimal solution of the LP subproblem

SP : g(xi , ci ) := min
yi∈Y

{c�
i Cyi | Ayi ≤ Bxi }. (2)

The set of problems I is finite, the xi are (possibly overlapping) subvectors of x, Y is
a convex polyhedron, and the πi are non-negative constants. The coefficient matrices
A, B, and C are the same in every subproblem so the subproblems differ only through
the value of their parameters, xi and ci . The ci are vectors of coefficients and the xi are
vectors of variables for (1) and parameters for (2). However, elements of xi may be set
to fixed values in x ∈ X , so become equivalent to parameters specific to subproblem
i . The inclusion of the matrices B and C allow the dimensions of xi and ci to differ
from (and in the case we shall present be much smaller than) the number of explicit
constraints and variables yi in each subproblem.

The function g(xi , ci ) has properties that can be exploited in the solution procedure.
It is a saddle function, convex w.r.t. xi , and concave w.r.t. ci . Moreover, we focus on
problems where g(xi , ci ) is also a decreasing function of xi and an increasing function
of ci . Monotonicity can be a natural property of the problem, e.g. when C ≥ 0, y ≥ 0,
and B ≥ 0, or the problem can be usually rearranged to have this property.

An example of a problem with the above structure is an investment planning prob-
lem. Here the x represents investment decisions with corresponding investment cost
f (x). The investments affect a set I of situations, and xi is the subvector of x that
represents the investments that affect the situation i , ci specifies the operational costs,
yi defines the operational decisions, and g(xi , ci ) gives the optimal operating cost.
The test case we present in this paper is a stochastic problem, where the situations
are the different possible scenarios that might occur in the future, each of which is
weighted by the probability πi of that situation occurring. Note that in a multistage
planning problem the sum of the πi at each stage is equal to 1, so

∑
i∈I πi ≥ 1.

1.1 Literature review

In the standard Benders decomposition algorithms [2,16] for problem (1) a sequence
of relaxations is solved. At each iteration j the relaxed master problem is
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RMP : min
x∈X ,β

f (x) +
∑

i∈I
πiβi

s.t. βi ≥ θ + λ�(xi − x), ∀(x, θ, λ) ∈ �
( j−1)
i , ∀i ∈ I, (3)

where �
( j−1)
i is the set of cutting planes associated with subproblem i built up to

iteration j − 1. To generate a new cutting plane at iteration j , we first solve the RMP
and obtain the optimal solution x( j). Then, for each i ∈ I we call an oracle that,
for given x ( j)

i , returns the optimal objective value θ
( j)
i = g(x ( j)

i , ci ) of SP and a

subgradient λ
( j)
i w.r.t. x ( j)

i . Such an oracle that generates an exact value of g and its
subgradient will be referred to as exact. The newly generated cutting plane is added
to �

( j−1)
i yielding �

( j)
i := �

( j−1)
i ∪ {(x ( j)

i , θ
( j)
i , λ

( j)
i )}.

The standard Benders algorithm requires calling the exact oracle |I| times at each
iteration j . Consequently, when the number of subproblems is large and the exact
oracle is hard to solve (e.g., the problem (2) is very large), the computational efficiency
of these methods is badly affected. This motivates the investigation of Benders-type
algorithms able to exploit the information of inexact oracles. An inexact oracle only
provides an estimate of θ

( j)
i and λ

( j)
i , but possibly much faster than an exact oracle.

Inexact oracles can have different characteristics. Theymay ormay not guarantee to
generate valid bounds and cutting planes. Additionally it may ormay not be possible to
control the accuracy of the oracle, and bounds on the approximation error may or may
not be known. An example of an inexact oracle is the one proposed in [11]. The authors
suggest solving only a subset Iex ⊂ I of subproblems and using fast techniques to
evaluate approximate values of θ

( j)
i and λ

( j)
i for subproblems i ∈ I\Iex . Using a

concept of collinearity the authors group similar subproblems, solve one subproblem
per group, and derive an approximate solution for the remaining subproblems of each
group. Similar inexact oracles that do not provide a guaranteed bound can be found in
[6–8,14]. Zakeri et al. [18] propose solving each subproblem i ∈ I up to a predefined
tolerance which is then tightened over time to ensure convergence. The generated
cutting planes are all valid and asymptotically exact. Similar inexact but always valid
oracles are proposed by [4,5]. The use of any of the above types of oracles leads
to algorithms that are fast at the early iterations but are potentially almost as slow
as exact oracles towards the end of the iterative procedure. As a matter of fact, in
order to obtain high accuracy, the approach of [11] would need to solve almost all
the set of subproblems (i.e., Iex ≈ I), and the inexact oracle of [18] would solve the
subproblems up to a very tight tolerance.

An alternative approach to constructing inexact oracles is to exploit some known
properties of the subproblems that allow valid cuts to be generated for subproblems
from solution of different problems. This approach has been used in stochastic dual
dynamic programming (Pereira et al. [12]), for example by exploiting convexity of the
recourse function w.r.t. the uncertain parameters. Stochastic dual dynamic program-
ming is also used to solve minimax problems, which can arise from the inclusion of
risk-aversion within the model. This leads to saddle functions similar to g(xi , ci ), i.e.,
convex in some directions (xi ) and concave in others (ci ). Philpott et al. [13] exploit
this property and construct an upper bound on the recourse function using an inner
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approximation. However, an inner approximation is infeasible if the point of interest
is not in the convex hull of known points, so the authors propose to initially compute
a solution for every extreme point of the uncertainty set. Work [1] proposes using
penalties to deal with infeasibility and obtains valid lower and upper bounds to saddle
functions without sampling all the vertices of the uncertainty set.

1.2 Approach and contributions

This paper proposes two new inexact oracles, which we refer to as adaptive oracles.
The first adaptive oracle approximates g(xi , ci ) from below and it is called to generate
inexact but valid cuts of those subproblems that are not solved at an iteration j . The
second adaptive oracle approximates g(xi , ci ) from above and it is called to obtain
a valid upper bound when a subproblem is not solved. The adaptive oracles exploit
properties of g(xi , ci ) such as convexity w.r.t. xi and concavity w.r.t. ci . In addition,
they require g(xi , ci ) to be a monotonic function of both xi and ci . The adaptive
oracles use the knowledge of m solutions of g(xi , ci ), known by having solved some
subproblems in the previous iterations. Increasing the number m of known solutions,
makes both oracles progressively “adapt” towards the true function g(xi , ci ).

The proposed adaptive oracles are asymptotically exact oracles, since they provide
valid upper and lower bounds of g(xi , ci ), a valid subgradient, and both bounds tend
toward g(xi , ci ) as the number of iterations grows. However, they have properties
that, combined, distinguish them from the inexact oracles available in the literature
[5–8,10,11,14,15,17,18]. First, the computational effort required to solve the adaptive
oracles is independent of the size and complexity of the exact oracle (2), and only
depends on the number m of known solutions. Second, a Benders-type algorithm that
uses the adaptive oracles converges to an ε-optimal solution (ε ≥ 0) in a finite number
of iterations even when only a single subproblem is solved at each iteration. As a
consequence, when subproblems are expensive to solve and the set I of subproblems
is large, each iteration is much faster thanmethods that solve every subproblem at each
iteration, and we show this can lead to a significant reduction in total solution time.
We test our new method on stochastic LP investment planning problems with up to
1.06× 108 variables and 3.11× 108 constraints against a standard Benders algorithm
and the Benders algorithm with inexact cuts of [18] (used as a benchmark). Compared
to the standard Benders decomposition, the decomposition algorithm of [18] is 1.6,
1.7, and 1.9 times faster at reaching an optimality tolerance ε of 1.00%, 0.10%, and
0.01%, while our proposed algorithm is 31.9, 28.5, and 15.4 times faster than standard
Benders and 19.5, 16.5, and 8.1 times faster than the Benders algorithm of [18] to
reach the same ε.

1.3 Paper structure

The remainder of the paper is organized as follows. Section 2 introduces assump-
tions on problems (1) and (2), needed to apply our adaptive oracles. Section 3 briefly
presents a standard formulation of the Benders decomposition algorithm. Section 4
illustrates the intuitions behind the proposed adaptive oracles and derives the associ-
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ated mathematical formulation. The adaptive oracles are embedded within a Benders
decomposition algorithm in Sect. 5. Section 6 tests the proposed Benders with adap-
tive oracles against a standard Benders algorithm on a stochastic investment planning
problem. Finally, conclusions are drawn in Sect. 7.

2 Assumptions

We consider solving problems of the form of (1). The subproblem SP in (2) is assumed
to be always feasible (any possible infeasibility having been dealt with by reformu-
lating the subproblem using infeasibility penalties) and bounded for each decision x
that belongs to X and for all ci . Accordingly, we say that the function g(x, c) can be
computed for all x ∈ Kx and c ∈ Kc, where the region Kx is obtained by collecting
all the possible xi such that x ∈ X , and the region Kc collecting all ci for all i ∈ I.
Then, we assume that there exist two vectors x and c such that x ≤ x, ∀x ∈ Kx , and
c ≤ c, ∀c ∈ Kc, and that subproblem SP is feasible and bounded at the special point
(x, c).

Function g(x, c) is a convex function of x and a concave function of c (e.g., see
[3]). In addition, we assume that g(x, c) is a non-increasing function of x , and a
non-decreasing function of c. If the property of monotonicity does not hold naturally,
problem (1) can bemodified so that the rearranged subproblem is amonotonic function
of both x and c (see “Appendix A”).

3 Standard benders

This section briefly describes how a Benders algorithm can exploit the block structure
of problem (1) allowing it to be solved in a decomposed fashion.

3.1 Algorithm

In a standard Benders algorithm applied to problem (1), we iteratively approximate
the subproblem cost function through a set of cutting planes. The formulation of the
relaxed master problem RMP is given in (3) and the standard Benders decomposition
is summarized in Algorithm 1.
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3.2 Convergence of Algorithm 1

Definition 1 Let Li be the set of cutting planes {(x (�)
i , θ

(�)
i , λ

(�)
i ),∀� ∈ Li } associated

with subproblem i already added to the relaxed master problem. We say that a new
exact cut (x, θ, λ) is locally-improving if and only if

θ > max
�∈Li

{
θ

(�)
i + λ

(�)�
i

(
x − x (�)

i

)}
.

Lemma 1 At each iteration, either Algorithm terminates with an ε-optimal solution,
or the algorithm adds at least one locally-improving exact cut to the reduced master
problem.

Proof If none of the exact cuts (x ( j)
i , θ

( j)
i , λ

( j)
i ) generated at iteration j is locally-

improving, it follows that

θ
( j)
i ≤ max

�< j

{
θ

(�)
i + λ

(�)�
i

(
x ( j)
i − x (�)

i

)}
, ∀i ∈ I, (4)

and given that the right side of (4) is equal to β
( j)
i , it follows that the lower bound and

the upper bound have converged exactly. 
�
Lemma 2 There exists a finite number of locally-improving exact cutting planes that
can be added to the relaxed master problem.

Proof Since each subproblem g(xi , ci ) is an LP, there exist a finite number of faces
(of all dimensions from 0, i.e. vertices, edges, …, facets), and each exact cutting plane
gives an exact representation of (at least) one of these faces. A new exact cut can be
locally-improving if and only if it is associated with a face that has not been exactly
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Fig. 1 Illustration of the saddle
function g(x, c), convex and
non-increasing w.r.t x and
concave and non-decreasing
w.r.t. c

represented yet. Then, given that the number |I| of subproblems is finite, it follows
that there exists a finite number of locally-improving exact cuts that can be added to
the relaxed master problem. 
�
Theorem 1 For any ε ≥ 0, Algorithm 1 finds an ε-optimal solution to problem (1) in
a finite number of iterations.

Proof Lemma 2 proves that there exists a finite number of locally-improving exact cuts
that can be added to the reducedmaster problem, andLemma 1 proves that Algorithm1
adds at least one locally-improving exact cut at each iteration (or it has converged). It
follows that Algorithm 1 finds an ε-optimal solution to problem (1) in a finite number
of iterations. 
�
Remark 1 Convergence proofs for Benders decomposition (e.g., see [18]) usually rely
on the existence of a finite number of basis matrices for each subproblem. In contrast,
Theorem 1 relies on the existence of a finite number of faces and does not require that
each exact cut corresponds to a basis matrix.

4 Adaptive oracles

This section presents the adaptive oracles used within the proposed novel Benders-
type decomposition algorithm. Figure 1 illustrates a saddle function g(x, c), convex
and non-increasing w.r.t x , and concave and non-decreasing w.r.t. c. This function is
used to illustrate the intuition behind the proposed adaptive oracles.

4.1 Graphical interpretation of the adaptive oracles

For a subproblem i that is not solved at iteration j , we call two adaptive oracles to
retrieve the information needed to perform a Benders-type iteration. The first adaptive
oracle provides θ

( j)
i and λ

( j)
i such that (x ( j)

i , θ
( j)
i , λ

( j)
i ) generates a valid cutting plane.

The second adaptive oracle yields an upper bound θ
( j)
i on g(x ( j)

i , ci ), which is then
used to compute a valid upper bound on the optimal solution of the relaxed master
problem at x( j).

Before presenting the mathematical formulation of the two adaptive oracles, we
give a graphic and explanatory example using the saddle function g(x, c) shown in
Fig. 1. Figure 2 illustrates how to obtain a valid lower bound on g(x, c), and Fig. 2
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2 Illustrative example of how to obtain a valid lower and upper bound θr on θr = g(xr , cr )

shows how to obtain a valid upper bound on g(x, c). Assume that we know the exact
value θs = g(xs, cs) at points {(xs, cs), s = 1, . . . ,m}, shown with blue filled dots in
Figs. 2a and d, and we want to obtain valid lower and upper bounds on g(x, c) at a
new point (xr , cr ), shown with a blue empty dot. Note that Figs. 2a and d also include
the special point (x, c), marked with a blue filled star, which is needed at the end of
the examples.

Each red dashed line in Fig. 2a shows the tangent at a blue point (xs, cs) w.r.t. x
(i.e., for fixed cs). Since g(x, cs) is convex w.r.t. x , the tangent lies below g(x, cs). The
red squares are the points (θ ′

s, xr , cs) on the tangent where x = xr . If the gradients
are λs , then θ ′

s = θs + λ�
s (xr − xs). Since g(xr , c) is concave w.r.t. c and all the
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red square points lie in x = xr plane and below g(xr , c), the convex hull of these
points also lies below g(xr , c). Figure 2b illustrates this convex hull as a red shaded
area, and the gray shaded areas indicate values of c where a convex combination can
not be found. Figure 2c shows that if the special point (x, c) is included among the
known points (xs, cs), the non-decreasing property of g(x, c) w.r.t. c can be exploited
to extend the convex hull and obtain a valid lower bound for all c ≥ c. In particular,
the upper envelope of the convex hull gives the tightest lower bound on g(xr , c).

The green dashed lines in Fig. 2d are the tangents (with gradient φs) at each blue
point (xs, cs) w.r.t. c, which lie above g(xs, c) since g(xs, c) is concave w.r.t. c. The
green squares (θ

′
s, xs, cr ) are the points on the tangents where c = cr , i.e., θ

′
s =

θs + φ�
s (cr − cs). The convex hull of these points lies above g(x, cr ), given that

g(x, cr ) is convex w.r.t. x and the green square points lie above g(x, cr ). Figure 2e
shows this convex hull as a green shaded area, likewise two gray shaded areas where
a convex combination can not be found. If the special point (x, c) is included we
extend the convex hull and obtain a valid upper bound for all x ≥ x by exploiting the
non-increasing property of g(x, c) w.r.t. x (see Fig. 2f). Here, the lower envelope of
the convex hull gives the tightest upper bound on g(x, cr ).

Note that the methodology for obtaining a valid upper bound is the counterpart of
the methodology for obtaining a valid lower bound. As an example, one could use
the lower bounding oracle to get a valid lower bound on g(x, c) and the same oracle
to also obtain a valid upper bound. To do that, one can compute a valid lower bound
on ĝ(c, x) = −g(x, c) and use it (with a change in sign) as a valid upper bound on
g(x, c).

4.2 Adaptive oracles

This section gives a mathematical formulation of the intuitions illustrated in Sect. 4.1.
Consider the saddle function g(x, c), and suppose we have already found m optimal
solutions at {(xs, cs), s = 1, ..,m}. At each point s, we know the true value θs , a
subgradient λs w.r.t. x , and a subgradient φs w.r.t. c. We are interested in building a
valid cutting plane and obtaining a valid upper bound at a new point (x, c), without
solving the associated subproblem.

Adaptive oracle for valid cutting plane

Let ALB
m (x, c) be defined as

ALB
m (x, c) : θ(x, c) = max

μ≥0
θ(x, c) =

m∑

s=1

μs

(
θs + λ�

s (x − xs)
)

s.t.
m∑

s=1

μscs ≤ c,
m∑

s=1

μs = 1. (5)
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Lemma 3 Assume that the set of known points {(xs, cs), s = 1, . . . ,m} includes the
special point (x, c), and let μ(x, c) be a feasible solution of (5) and λ(x, c) =∑m

s=1 μs(x, c)λs . Then,

(a) ALB
m (x, c) is feasible for all x ∈ Kx , c ∈ Kc,

(b) θ(x, c) ≤ θ(x, c) ≤ g(x, c), for all x ∈ Kx , c ∈ Kc,
(c) θ(xr , cr ) = g(xr , cr ), for all r = 1, ..,m,
(d) θ(x, c) + λ(x, c)�

(
x̂ − x

) ≤ g(x̂, c), for all x̂ ∈ Kx , x ∈ Kx , c ∈ Kc.

Proof (a) Set the variable μs associated with (x, c) equal to 1, and all the others to
0. The first constraint of (5) becomes c ≤ c, which is true by definition, and the
other constraints also hold.

(b) The definition of θ(x, c) leads to

θ(x, c) =
m∑

s=1

μs(x, c) (θs + λ�
s (x − xs)) ≤

m∑

s=1

μs(x, c)g(x, cs)

≤ g(x,
m∑

s=1

μs(x, c)cs)

≤ g(x, c).

The first inequality holds since θs +λ�
s (x − xs) is an underestimator of the convex

function g(x, cs) and μ(x, c) ≥ 0, the second inequality holds since the μ(x, c)
define a convex combination and g(x, c) is concave w.r.t. c, and the third holds
since

∑m
s=1 μs(x, c)cs ≤ c and g(x, c) is non-decreasing w.r.t. c.

(c) Setting μr = 1 gives a feasible solution with objective value θr + λ�
r (xr − xr ) =

θr . Since μr is feasible forALB
m (xr , cr ), it follows that θ(xr , cr ) ≥ θr = g(xr , cr ).

This and b) imply θ(xr , cr ) = g(xr , cr ).
(d) Since the weights μ(x, c) are feasible for ALB

m (x, c), they are also feasible for
ALB

m (x̂, c). Hence,

g(x̂, c) ≥
m∑

s=1

μs(x, c)(θs + λ�
s

(
x̂ − xs

)
)

=
m∑

s=1

μs(x, c)(θs + λ�
s (x − xs)) +

m∑

s=1

μs(x, c)(λ
�
s

(
x̂ − x

)
)

= θ(x, c) + λ(x, c)�
(
x̂ − x

)
.

The first equality follows since

λ�
s

(
x̂ − xs

) = λ�
s (x − xs) + λ�

s

(
x̂ − x

)
,

and the second from the definition of θ(x, c) and λ(x, c). 
�
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Adaptive oracle for valid upper bound

Let AUB
m (x, c) be defined as

AUB
m (x, c) : θ(x, c) = min

ν≥0
θ(x, c) =

m∑

s=1

νs

(
θs + φ�

s (c − cs)
)

s.t.
m∑

s=1

νs xs ≤ x,
m∑

s=1

νs = 1. (6)

Lemma 4 Assume that the set of known points {(xs, cs), s = 1, . . . ,m} includes the
special point (x, c). Then,

(a) AUB
m (x, c) is feasible for all x ∈ Kx , c ∈ Kc,

(b) θ(x, c) ≥ θ(x, c) ≥ g(x, c), for all x ∈ Kx , c ∈ Kc,
(c) θ(xr , cr ) = g(xr , cr ), for all r = 1, ..,m.

Proof Lemma 4 can be proved similarly to Lemma 3 (parts a, b, and c) since obtaining
a valid upper bound is the exact counterpart than obtaining a valid lower bound. 
�

Notes on adaptive oracles

Note that every feasible solution μ of ALB
m (x, c) gives a valid cutting plane (x, θ, λ).

Of these possible cuts, the one corresponding to the optimal solution, i.e., (x, θ, λ), is
the tightest at x . IfALB

m (x, c) and/orAUB
m (x, c) are solved to a feasible but not optimal

solution, the generated cutting plane and upper bound are still valid.
A graphical interpretation of θ and θ ofALB

m (x, c) is shown in Fig. 2c, where the set
(θ, c) is the red continuous curve, and the set (θ, c) is the red shaded area. Figure 2f
gives an interpretation of θ and θ of AUB

m (x, c), where the set (θ, c) is the green
continuous curve, and the set (θ, c) is the green shaded area.

5 Benders decomposition with adaptive oracles

This section presents theBenders-type algorithm incorporating the inexact information
of the adaptive oracles of Sect. 4.

5.1 Convergence of Algorithm 2

Lemma 5 At each iteration, either Algorithm 2 finds an ε-optimal solution, or the
algorithm adds at least one locally-improving exact cut to the reducedmaster problem.

Proof At iteration j Algorithm 2 adds at least one locally-improving exact cut to the
reduced master problem (ξ ( j) = 1) or all the subproblems are solved for the current
solution (E ( j) = ∅). If none of the exact cuts (x ( j)

i , θ
( j)
i , λ

( j)
i ) generated at iteration
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Algorithm 2: Adapt_Bend (Benders with Adaptive Oracles)
choose ε (convergence tolerance);
choose β (lower bound for each βi );

set j := 0 and �
(0)
i := {(0, β, 0)} for each i ∈ I;

solve g(x, c) to obtain θ , λ, and φ;
set S := {(x, c, θ, λ, φ)};
repeat

set j := j + 1;

solve RMP and obtain x( j) and β( j);

set L( j) := f (x( j)) + ∑
i∈I πiβ

( j)
i ;

set ξ( j) := 0 and E( j) := I;
repeat

set Iex := non-empty subset of E( j);

set E( j) := E( j)\Iex ;
for i ∈ Iex do

solve subproblem i at (x( j)
i , ci ) and obtain θ

( j)
i , λ( j)

i , and φ
( j)
i ;

if (x( j)
i , θ

( j)
i , λ

( j)
i ) is locally-improving then ξ( j) := 1 set

S := S ∪ {(x( j)
i , ci , θ

( j)
i , λ

( j)
i , φ

( j)
i )};

set θ( j)
i := θ

( j)
i , λ( j)

i := λ
( j)
i , and θ

( j)
i := θ

( j)
i ;

end
until ξ( j) = 1 or E( j) = ∅;

for i ∈ E( j) do

solve ALB|S|(x
( j)
i , ci ) and obtain θ

( j)
i and λ

( j)
i ;

solve AUB|S|(x
( j)
i , ci ) and obtain θ

( j)
i ;

end

set U
( j) := min

(
U

( j−1)
, f (x( j)) + ∑

i∈I πi θ
( j)
i

)
;

for i ∈ I do

set �( j)
i := �

( j−1)
i ∪ {(x( j)

i , θ
( j)
i , λ

( j)
i )}

end

until U( j) − L( j) ≤ ε;

j is locally-improving (ξ ( j) = 0), it follows that

θ
( j)
i ≤ max

�< j

{
θ

(�)
i + λ

(�)�
i

(
x ( j)
i − x (�)

i

)}
, ∀i ∈ I, (7)

and given that the left- and right-hand sides of (7) are equal to θ
( j)
i and β

( j)
i , respec-

tively, it follows that the lower bound and the upper bound have converged exactly.

�

Theorem 2 For any ε ≥ 0, Algorithm 2 finds an ε-optimal solution to problem (1) in
a finite number of iterations.

Proof Lemma 2 proves that there exists a finite number of locally-improving exact cuts
that can be added to the reducedmaster problem, andLemma 5 proves that Algorithm2
adds at least one locally-improving exact cut at each iteration (or it has converged). It

123



Benders decomposition with adaptive oracles for large… 695

follows that Algorithm 2 finds an ε-optimal solution to problem (1) in a finite number
of iterations. 
�

6 Case Study

We test the proposed Benders algorithm with adaptive oracles on power system
stochastic investment planning problems. Serial and parallel versions of the algo-
rithms are implemented in Julia 1.4. Two Linux Desktop computers Intel i7 6-core
processor clocking at 2.40 GHz and 16 GB of RAM are used for running the code.
The serial implementation is run on a single machine, and the parallel implementa-
tion uses both machines simultaneously. The optimization models are implemented in
JuMP (Julia package) and solved with Gurobi 9.0. The Julia code implementing
Algorithms 1 (Stand_Bend) and 2 (Adapt_Bend) for the proposed case study is
provided at https://github.com/nimazzi/Stand_and_Adapt_Bend [9].

6.1 Investment planningmodel

We consider a power system investment planning problem with a time horizon of 15
years. The deterministic version of the problem has 3 decision nodes: one refers to
decisions to be taken in the first stage, one to decisions in 5 years time, and one to
decision in 10 years time. The stochastic version is obtained by modeling different
possible scenarios for the future of the system in 5 and 10 years. At each node we also
compute the cost of operating the system for the following 5 years for given installed
capacity. We consider a construction time of 5 years, so new assets installed in the first
stage will only be available in 5 and 10 years, and new capacity installed in 5 years
will only be available in 10 years. We model a set P of technologies: 6 thermal units,
3 storage units, and 3 renewable generation units. The cost for operating the system
is computed by solving an hourly economic dispatch for 5 years.

We formulate the stochastic investment planning problem as

min
x∈X

f (x) +
∑

i∈I
πi g(xi , ci ), (8)

where I is the set of stochastic decision nodes, each associated with a probability πi .
The function

g(xi , ci ) = min
yi∈Y

{c�
i Cyi | Ayi ≤ Bxi }, ∀i ∈ I, (9)

gives the cost of operating the system over 5 years. The vector of parameters xi is
given by

xi =
({

xaccpi ,∀p ∈ P
}

,−νD
i , νE

i

)
, ∀i ∈ I,
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where xaccpi is the accumulated capacity of technology p at node i . Parameters νD
i and

νE
i are the relative level of energy demand and the yearly CO2 emission limit, respec-
tively. Note that g(xi , ci ) is non-increasing w.r.t. xacci and νE

i , and non-decreasing
w.r.t. νD

i , so using −νD
i instead satisfies the non-increasing requirement. The vector

of uncertain cost coefficients ci is

ci = (cnucli , cco2i ), ∀i ∈ I,

where cnucli is the uranium fuel price and cco2i the CO2 emission price, and g(xi , ci ) is
non-decreasing w.r.t. both cnucli and cco2i . All the remaining parameters, e.g., A, B, and
C , are the same for every node i ∈ I. Finally, the function f (x) yields the expected
total investment and fixed cost, and it is computed as

f (x) =
∑

i∈I
πi

∑

p∈P

(
cinv
pi x

inst
pi + c f i x

pi xaccpi

)
,

where the variable xinstpi is the newly installed capacity of technology p at node i .

Parameters cinv
pi and c f i x

pi are the unitary investment and fixed costs of technology p
at node i . The accumulated capacity xaccpi at node i is computed as the sum of the

historical capacity xhistpi and the newly installed capacity xinstpi ′ at nodes i ′ ancestors to
i . Finally, the initial special point (x, c) is set to

x, c =
({

mini x
hist
pi ,∀p ∈ P

}
,−maxi νD

i ,mini νE
i

)
,
(
mini c

nucl
i ,mini c

co2
i

)

We consider three possible sources of uncertainty, i.e., νE
i , c

co2
i , and cnucli . Each

uncertain parameter has 3 possible outcomes in 5 years, each of which is linked to 3
additional possible outcomes in 10 years. The result is 9 possible trajectories for each
source of uncertainty, all with the same probability. We consider 4 different cases of
the investment problem. Case 0 is the deterministic version, where νE

i , c
co2
i , and cnucli

are deterministic parameters (weighted average of the scenarios). Then, case 1 has 1
uncertain parameter (νE

i ), case 2 has 2 uncertain parameters (νE
i and cco2i ), and case 3

has 3 uncertain parameters (νE
i , c

co2
i , and cnucli ). The number of decision nodes and the

size of the deterministic equivalent for the 4 versions of the problem is summarized
in Table 1. As a benchmark, we try to solve the deterministic equivalent problem for
cases 0, 1, 2, and 3 on our Linux Desktop computer. Case 0 is successfully solved in
4 minutes, and case 1 in 58 minutes. The deterministic equivalent of cases 2 and 3 is
not solved since the Julia instance is killed due to a memory overload.

6.2 Results

We use Algorithms 1 (Stand_Bend) and 2 (Adapt_Bend) to solve the stochastic
investment planning problem (8), whose operational subproblems (9) are LP problems
with 4.11× 105 constraints and 1.40× 105 variables. All the subproblems are solved
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Table 1 Decision nodes I and size of the deterministic equivalent problem for different cases of the study

Case Number of decision nodes |I| Variables Constraints

Present In 5 years In 10 years

0 1 1 1 3 2.80×105 8.24×105

1 1 3 9 13 1.68×106 4.94×106

2 1 9 81 91 1.26×107 3.71×107

3 1 27 729 757 1.06×108 3.11×108

with Gurobi barrier method (“Method”=2), while we do not impose a predefined
solution method for the RMP and the oracles (“Method”=-1). In the serial implen-
tation of the algorithms we set “Threads”=0 for the RMP, the subproblems, and
the oracles, i.e., Gurobi decides the amount of threads to use. In the parallel imple-
mentation of the algorithms we impose “Threads”=1 for the subproblems and the
oracles.

For Algorithm 2 at each iteration j we choose the set Iex = {ik, k = 1, .., w} of w

subproblems that are solved exactly. Each element ik is the (or one of the) i ∈ E ( j)
k for

which the difference πiθ
( j−1)
i −πiθ

( j−1)
i is maximum, where the E ( j)

k form a partition

of E ( j). The idea is to group in each subset E ( j)
k subproblems that are potentially similar

to each others, to diversify the exact solutions that are added to the oracles. To select
the w subsets of E ( j) we use the kmeans function of the Clustering package with
(νD

i , νE
i , cnucli , cco2i ) as the input parameters.

As a benchmark, we also implement the Benders algorithm with inexact cuts as
presented in [18], and we refer to it as Algorithm 3 or Zaker_Bend. The core idea is
to solve subproblems up to primal-dual feasible solution with an optimality gap lower
than δ( j) which is large for early iterations and progressively tightened (δ( j) → 0
for j → ∞) as the algorithm approaches the optimal solution. The dual solution and
dual objective are used to build valid cutting planes, and the primal objective is used
to build a valid upper bound. To obtain such primal-dual feasible solution, we solve
subproblems with barrier method, we disable crossover (“Crossover”=0), and we
impose the optimality gap to δ( j) (“BarConvTol”=δ( j)), in accordance with [18].
The optimality gap is set to 1 (maximum value of “BarConvTol”) for the first
iteration, i.e., δ(1) = 1, then we use the update rule δ( j) := 1

10δ
( j−1) suggested by

[18]. We set a minimum threshold for δ( j) to 10−8 which is the default value for
“BarConvTol”.

Table 2 gives the optimal investment decisions to be taken in the first investment
stage for cases 0–3. The solutions are obtained solving (8) with Algorithm 1 up to
an 0.01%-optimal solution. Including a more accurate description of the stochastic
processes involved in the decision-making process progressively modifies the optimal
decisions of the system planner. Using the full stochastic model (case 3) the planner
takes considerably different decisions compared to the ones yielded by its deterministic
counterpart (case 0). In case 0 the system planner builds 13.7 GW of CCGT, 1.4 GW
of diesel, and 19.0 GW of onshore wind. In case 3 the investment in CCGT (11.4 GW)
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Table 2 Optimal investments in the first investment stage for cases 0–3

Tech. p ∈ P Type New installed capacity (GW)

Case 0 Case 1 Case 2 Case 3

Coal Thermal 0.0 0.0 0.0 0.0

Coal&CCS Thermal 0.0 0.0 0.8 1.2

OCGT Thermal 0.0 0.0 0.0 0.0

CCGT Thermal 13.7 13.3 11.8 11.4

Diesel Thermal 1.4 1.8 2.0 2.0

Nuclear Thermal 0.0 0.0 0.0 0.0

PumpL Storage 0.0 0.0 0.0 0.0

PumpH Storage 0.0 0.0 0.0 0.0

Lithium Storage 0.0 0.0 0.0 0.0

Onshore wind Renewable 19.0 19.0 19.0 19.0

Offshore wind Renewable 0.0 0.0 0.0 0.0

PV solar Renewable 0.0 0.0 0.0 0.0

is less and there is a slight increase in the amount of diesel (2.0 GW). In addition, the
planner invests in 1.2 GW of coal with CCS which is not used at all in case 0.

Note that other technologies (e.g., nuclear and off-shore wind) are chosen in many
scenarios of the second investment stage (in 5 years) and that varying amounts of most
of the technologies are explored during the iterative solution procedure, even if these
are not used in the optimal solution.

Serial implementation

This section discusses the results of the serial implementation of the algorithms, where
only one Julia instance is launched. For Algorithm 2 we set w = 1 so one single
subproblem is solved exactly at each iteration.

Table 3 shows the effort in terms of iterations and computation time (the timer
starts after the Julia code has been precompiled) to reach an ε-optimal solution using
Algorithms 1 (Stand_Bend), 2 (Adapt_Bend), and 3 (Zaker_Bend) for case
studies 0–3. We report the results for values of the optimality tolerance ε of 1.00%,
0.10%, and 0.01%. For case 0 the computation efficiencies of Algorithms 1, 2, and 3
are similar. In this small case study Algorithms 1 and 3 solve 2 subproblems each
iteration and Algorithm 2 solves 1 subproblem. However, Algorithm 2 needs more
iterations to reach the target tolerance. As an example, to obtain a tolerance lower
than 0.01% Algorithm 1 requires 26 iterations and Algorithm 2 needs 50. Increasing
the size of the problem makes the comparison more interesting. For example, for case
2 Algorithm 1 needs 13 and 24 iterations to reach tolerance of 1.00% and 0.01%,
respectively. To reach the same tolerances Algorithm 3 performs 12 and 21 iterations,
respectively, and Algorithm 2 performs 67 and 190 iterations. However, an iteration of
Algorithms 1 and 3 solves 90 subproblemswhileAlgorithm2 solves only 1. The results
show that Algorithm 1 takes 64 minutes to yield an 0.01%-optimal solution compared

123



Benders decomposition with adaptive oracles for large… 699

to 38 minutes for Algorithm 3, i.e., 1.7 times faster. To reach the same tolerance
Algorithm 2 needs less than 8 minutes, i.e., 8.1 and 4.8 times faster than Algorithm 1
and 3, respectively. For case 3 this difference is even larger as Algorithms 1 and 3 solve
the subproblem 756 times at each iteration. Accordingly, even if they reach a 1.00%
tolerance in only 12 iterations, this requires 4 hours and 15minutes, and 2 hours and 36
minutes, respectively. On the other hand, Algorithm 2 reaches the same tolerance in 8
minutes, 31.9 times faster thanAlgorithm 1 and 19.5 times faster thanAlgorithm 3. If a
tighter tolerance is needed the difference of performances progressively reduces but it
is still significant for ε = 0.01%. Indeed, Algorithm 1 requires around 9 hours and 18
minutes, Algorithm 3 takes 4 hours and 53minutes (1.9 times faster thanAlgorithm 1),
and Algorithm 2 needs 36 minutes (15.4 and 8.1 times faster than Algorithm 1 and 3,
respectively).

Table 4 shows the (relative) computation time of the main steps of Algorithm 2,
i.e., solving the relaxed master problem, solving the subproblems, and solving the
adaptive oracles, to reach an ε-optimal solution for case studies 0–3. We report the
results for value of the optimality tolerance ε of 1.00%, 0.10%, and 0.01%. In cases
0, 1, and 2 almost all the computation time is spent solving subproblems (one each
iteration). However, in case 3 more than 10% of the computation time to obtain an
0.01%-optimal solution is spent solving the master problem, 27% solving the adaptive
oracles, and only 65% solving subproblems. These results suggest that the proposed
rule of solving one subproblem at each iteration may not be the best when the number
|I| of subproblems grows significantly and that a selection rule that dynamically
decides the number of subproblems to solve at each iteration may then achieve a
better balance.

Parallel implementation

This section discusses the results of the parallel implementation of Algorithms 1 and 2,
where together with the main Julia instance we also start up a pool of workers via
function addprocs of the Distributed package. The RMP is solved in the main
Julia instance,while the subproblems and the oracles are solved by the pool ofworkers
via the function pmap. For Algorithm 2 we set w equal to the number of workers in
the pool, so one single subproblem is solved exactly by each worker at each iteration.

Table 5 compares the time and the number of iterations to reach an 0.01%-optimal
solution of case 3 using Algorithms 1 and 2 as a function of the size of the workers
pool. Algorithm 1 takes 23 iterations and 10 hours and 57 minutes with one worker in
the pool, whereas Algorithm 2 takes 537 iterations and 1 hour, i.e., 10.8 times faster
than Algorithm 1. The number of iterations for Algorithm 2 is slightly different from
the values shown in Table 3, even though when the pool contains one worker only
it should be equivalent to the serial implementation. The only difference from the
serial implementation is the number of threads used to solve subproblems and oracles.
Changing that value can make Gurobi converge to slightly different solutions (within
optimality and feasibility tolerances) and alter the way the Benders algorithm finds
an ε-optimal solution. Increasing the number of workers in the pool slightly changes
the relative speed-up obtained with Algorithm 2, mainly due to some load balancing
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Table 4 Analysis of Algorithm 2 (Adapt_Bend) computation time

ε (%) Relative computation time

Master problem (%) Exact subproblems (%) Adaptive oracles (%)

Case 0 1.00 0.14 99.22 0.03

0.10 0.12 99.37 0.03

0.01 0.08 99.55 0.04

Case 1 1.00 0.11 99.43 0.12

0.10 0.10 99.50 0.12

0.01 0.08 99.58 0.14

Case 2 1.00 0.28 98.40 1.02

0.10 0.33 98.03 1.42

0.01 0.43 97.48 1.92

Case 3 1.00 4.69 80.17 14.07

0.10 6.13 75.32 17.63

0.01 10.61 65.07 26.63

Table 5 Comparative results of
the parallel implementation for
Algorithm 1 (Stand_Bend)
and Algorithm 2
(Adapt_Bend) to solve case 3
up to ε = 0.01%

Workers Stand_Bend Adapt_Bend

Iters Time (s) Iters Time (s) Time ratio

1 23 39459 537 3639 10.8

2 23 22856 286 2026 11.3

3 23 14432 216 1622 8.9

4 23 11846 160 1246 9.5

issues when solving subproblems. When there are 4 workers in the pool Algorithm 1
needs 3 hours and 17 minutes, while Algorithm 2 takes 20 minutes, 9.5 times faster.

It is worth highlighting that running the parallel code on a single Linux Desktop
machine with more than two workers in the pool showed some severe slow down,
probably due to cache issues given the large size of the subproblems to solve.

7 Conclusions

This paper presents a novel concept of inexact oracles that can be used to speed up
the computational time of Benders-type decomposition algorithms for a class of large
scale optimization problems. We propose two adaptive oracles that yield inexact and
progressively more accurate information when subproblems are not solved. The first
adaptive oracle builds valid cutting planes, and the second adaptive oracle provides a
valid upper bound of the objective function. The two oracles exploit properties of the
Benders subproblem such as convexityw.r.t. right-hand side coefficients and concavity
w.r.t. cost coefficients, as well as monotonicity w.r.t. to both coefficients.

Weuse the novel adaptive oracleswithin aBenders-type decomposition algorithm to
solve a stochastic investment planning problem. The results show substantial improve-
ments in terms of computational efficiency (w.r.t. a standard Benders algorithm),
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especially if a large optimality gap is allowed. The largest problem we solve has
756 subproblems, each of which has 4.11× 105 linear constraints and 1.40× 105 lin-
ear variables. Our algorithm is 31.9 times faster than the standard Benders algorithm
to reach a 1.00% optimal solution and 15.4 times faster if the optimality tolerance is
tightened to 0.01%.
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and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
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A Reformulation to achievemonotonicity w.r.t. x and c.

We consider the case when g(x, c) := min
y∈Y

{c�Cy | Ay ≤ Bx} is not a monotonic

function of x and c. First, we formulate a modified version of g(x, c) as

g̃(x, c) = min
y∈Y

c�Cy + γ �x

s.t. Ay ≤ Bx
(10)

and choose a value of γ that makes the objective function c�Cy + γ T x monotonic
w.r.t. x . The master function objective is changed to f (x) − ∑

i∈I γ T xi to cancel out
this additional term. Then, we formulate a relaxed version of g̃(x, c) as follows

g̃c(x, c
α, cβ) = min

y∈Y,zα,zβ
cα�zα + cβ�zβ + γ �x

s.t. zα − zβ = Cy, Ay ≤ Bx

0 ≤ zα ≤ Zα, 0 ≤ zβ ≤ Zβ

(11)

where parameters Zα and Zβ ensure that the relaxed subproblem is not unbounded.
The value of Zα and Zβ is to be chosen so that they do not restrict the feasible region
w.r.t. (10). Note that g̃c(x, cα, cβ) is a concave and increasing function of both cα and
cβ , and that g̃c(x, cα, cβ) = g̃(x, c) if cα = c and cβ = −c. Computing g̃c(x, c,−c)
gives a solution that can be used in the adaptive oracle for obtaining a valid lower
bound on g̃(x, c), ∀x ∈ Kx ,∀c ∈ Kc.
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