Mathematical Programming Computation, Volume 5, Issue 1, March 2013

The time dependent traveling salesman problem: polyhedra and algorithm

HernĂ¡n Abeledo, Ricardo Fukasawa, Artur Pessoa, Eduardo Uchoa

The time dependent traveling salesman problem (TDTSP) is a generalization of the classical traveling salesman problem (TSP), where arc costs depend on their position in the tour with respect to the source node. While TSP instances with thousands of vertices can be solved routinely, there are very challenging TDTSP instances with less than 100 vertices. In this work, we study the polytope associated to the TDTSP formulation by Picard and Queyranne, which can be viewed as an extended formulation of the TSP.We determine the dimension of the TDTSP polytope and identify several families of facet-defining cuts.We obtain good computational results with a branch-cut-and-price algorithm using the new cuts, solving almost all instances from the TSPLIB with up to 107 vertices.

Full Text: PDF

Imprint and privacy statement

For the imprint and privacy statement we refer to the Imprint of ZIB.
© 2008-2022 by Zuse Institute Berlin (ZIB).