We present CasADi, an open-source software framework for numerical optimization. CasADi is a general-purpose tool that can be used to model and solve optimization problems with a large degree of flexibility, larger than what is associated with popular algebraic modeling languages such as AMPL, GAMS, JuMP or Pyomo. Of special interest are problems constrained by differential equations, i.e. optimal control problems. CasADi is written in self-contained C++, but is most conveniently used via full-featured interfaces to Python, MATLAB or Octave. Since its inception in late 2009, it has been used successfully for academic teaching as well as in applications from multiple fields, including process control, robotics and aerospace. This article gives an up-to-date and accessible introduction to the CasADi framework, which has undergone numerous design improvements over the last 7 years.

Full Text: PDF

The handling of symmetries in mixed integer programs in order to speed up the solution process of branch-and-cut solvers has recently received significant attention, both in theory and practice. This paper compares different methods for handling symmetries using a common implementation framework. We start by investigating the computation of symmetries and analyze the symmetries present in the MIPLIB 2010 instances. It turns out that many instances are affected by symmetry and most symmetry groups contain full symmetric groups as factors. We then present (variants of) six symmetry handling methods from the literature. Their implementation is tested on several testsets. On very symmetric instances used previously in the literature, it is essential to use methods like isomorphism pruning, orbital fixing, or orbital branching. Moreover, tests on the MIPLIB instances show that isomorphism pruning, orbital fixing, or adding symmetry breaking inequalities allow to speed-up the solution process by about 15% and more instances can be solved within the time limit.

Full Text: PDF

Nonconvex mixed-binary nonlinear optimization problems frequently appear in practice and are typically extremely hard to solve. In this paper we discuss a class of primal heuristics that are based on a reformulation of the problem as a mathematical program with equilibrium constraints. We then use different regularization schemes for this class of problems and use an iterative solution procedure for solving series of regularized problems. In the case of success, these procedures result in a feasible solution of the original mixed-binary nonlinear problem. Since we rely on local nonlinear programming solvers the resulting method is fast and we further improve its reliability by additional algorithmic techniques. We show the strength of our method by an extensive computational study on 662 MINLPLib2instances, where our methods are able to produce feasible solutions for 60% of all instances in at most 10s.

Full Text: PDF

We consider a quadratic program with a few negative eigenvalues (QP-r-NE) subject to linear and convex quadratic constraints that covers many applications and is known to be NP-hard even with one negative eigenvalue (QP1NE). In this paper, we first introduce a new global algorithm (ADMBB), which integrates several simple optimization techniques such as alternative direction method, and branch-and-bound, to find a globally optimal solution to the underlying QP within a pre-specified ϵ-tolerance. We establish the convergence of the ADMBB algorithm and estimate its complexity. Second, we develop a global search algorithm (GSA) for QP1NE that can locate an optimal solution to QP1NE within ϵ-tolerance and estimate the worst-case complexity bound of the GSA. Preliminary numerical results demonstrate that the ADMBB algorithm can effectively find a global optimal solution to large-scale QP-r-NE instances when r≤10, and the GSA outperforms the ADMBB for most of the tested QP1NE instances. The software reviewed as part of this submission was given the DOI (digital object identifier) https://doi.org/10.5281/zenodo.1344739.

Full Text: PDF

A (convex) polytope P is said to be 2-level if for each hyperplane H that supports a facet of P, the vertices of P can be covered with H and exactly one other translate of H. The study of these polytopes is motivated by questions in combinatorial optimization and communication complexity, among others. In this paper, we present the first algorithm for enumerating all combinatorial types of 2-level polytopes of a given dimension d, and provide complete experimental results for d⩽7. Our approach is inductive: for each fixed (d−1)-dimensional 2-level polytope P_{0}, we enumerate all d-dimensional 2-level polytopes P that have P_{0} as a facet. This relies on the enumeration of the closed sets of a closure operator over a finite ground set. By varying the prescribed facet P_{0}, we obtain all 2-level polytopes in dimension d.

Full Text: PDF

For the imprint and privacy statement we refer to the Imprint of ZIB.

© 2008-2020 by Zuse Institute Berlin (ZIB).