MPC

Mathematical Programming Computation, Volume 12, Issue 3, September 2020

A rotation-based branch-and-price approach for the nurse scheduling problem

Antoine Legrain, Jérémy Omer, Samuel Rosat

In this paper, we describe an algorithm for the personalized nurse scheduling problem. We focus on the deterministic counterpart of the specific problem that has been described in the second international nurse rostering competition. One specificity of this version is that most constraints are soft, meaning that they can be violated at the price of a penalty. We model the problem as an integer program (IP) that we solve using a branch-and-price procedure. This model is, to the best of our knowledge, comparable to no other from the literature, since each column of the IP corresponds to a rotation, i.e., a sequence of consecutive worked days for a nurse. In contrast, classical models involve individual nurse schedules over the complete horizon. We tackle instances involving up to 120 nurses and 4 shifts over an 8-weeks horizon by embedding the branch-and-price in a large-neighborhood-search framework. Initial solutions of the large-neighborhood search are found by a rolling-horizon algorithm well-suited to the rotation model.

Full Text: PDF




Imprint and privacy statement

For the imprint and privacy statement we refer to the Imprint of ZIB.
© 2008-2020 by Zuse Institute Berlin (ZIB).