Mathematical Programming Computation, Volume 11, Issue 2, June 2019

Font Size:  Small  Medium  Large

Solving linear programs with complementarity constraints using branch-and-cut

Bin Yu, John E. Mitchel, Jong-Shi Pang

Abstract


A linear program with linear complementarity constraints (LPCC) requires the minimization of a linear objective over a set of linear constraints together with additional linear complementarity constraints. This class has emerged as a modeling paradigm for a broad collection of problems, including bilevel programs, Stackelberg games, inverse quadratic programs, and problems involving equilibrium constraints. The presence of the complementarity constraints results in a nonconvex optimization problem. We develop a branch-and-cut algorithm to find a global optimum for this class of optimization problems, where we branch directly on complementarities. We develop branching rules and feasibility recovery procedures and demonstrate their computational effectiveness in a comparison with CPLEX. The implementation builds on CPLEX through the use of callback routines. The computational results show that our approach is a strong alternative to constructing an integer programming formulation using big-M terms to represent bounds for variables, with testing conducted on general LPCCs as well as on instances generated from bilevel programs with convex quadratic lower level problems.

Full Text: PDF

mpc footer
© MPS 2008-2019